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ABSTRACT 

This work is a study of two topics in the development of an extensible 
programming language,  i.e.,  a high level language with powerful defi- 
nitional facilities so designed that the language can be extended and 
thereby tailored for use in a wide variety of computer applications. 
The first topic is a theoretical treatment of an extension facility for 
syntax.   It generalizes the notion of context-free grammars to allow 
the syntax of a language to be a function of its generated strings.   It 
studies the formal properties of such grammars and presents an 
efficient algorithm for parsing their languages.   The second topic of 
this work is a study of the design and formal specification of a base 
language on which an extensible language system can be built.     It 
employs a formal definition to present a base language,  examines the 
constraints on the design of such language,   and discusses how these 
constraints shape the language.   The language includes one extension 
facility, that for data types; the facility,  its design,   and its relation 
to similar facilities in other languages are analyzed. 
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Chapter 1 

INTRODUCTION 

High-level problem-oriented programming languages were proposed 

to reduce the time and cost of programming by enabling the programmer 

to specify procedures in a concise language appropriate to some problem 

area (e.g.,  cf. [Back57]).   Initially,  this was simple enough:   there  were 

numerical scientific problems and there were business data processing 

problems.     In time,  however,  the set of application areas grew larger; 

a list would now include discrete simulation,  algebraic manipulation, 

artificial intelligence,   string and text processing,  machine tool control, 

civil engineering,   information retrieval,  and computer graphics.   There 

is no reason to believe that the growth in areas of computer applications 

has come to an end.   Further,   specific problems frequently fail to fall 

neatly into a  single application area.     It is sometimes necessary to per- 

form algebraic manipulation followed by numerical calculation,  discrete 

simulations with results displayed graphically,  or business data process- 

ing coupled with text processing and report preparation.   In the future, 

such sprawl of problems over several application areas will increase and 

may even become the rule. 

Traditionally,  computer science has attempted to provide one or 

more languages for each application area.   This is expensive.   Expensive 

in language design,  implementation,  and maintenance;  expensive in 

programmer training;  expensive in system overhead.   Further, this 

leaves unsatisfied the project or programmer whose problem involves 

more than one of the recognized areas. 



More recently, the solution has been to provide a language which 

serves several applications.   For example,   PL/I attempts "to encompass 

among its users the scientific,  commercial,  real-time,  and systems 

programmers" [Rad65],   CPL was developed with similar objectives 

[Barr63].   There are two difficulties with this approach. 

(1) Such languages are large.   To quote from a tutorial paper on PL/l by 

D. Beech of IBM:     "Perhaps the most immediately striking attribute of 

PL/l is its bulk" [Beech70].   The bulk is hardly surprising,  for such 

languages are essentially created by agglutination of facilities for the 

several intended application areas.   While not surprising it is,  however, 

expensive:   in language design,  implementation,  and maintenance,  in 

programmer training,  and in system overhead. 

(2) Only a limited,  fixed set of application areas is provided for.   The 

programmer who requires significant use of an area not explicitly included 

in the package is no better off than before.   For example,  PL/l provides 

character strings as a data type and has builtin certain simple operations 

on strings.   However,  if it is necessary to carry out a pattern-matching 

and replacement algorithm,  e.g. as in Snobol [Garb66],  PL/l provides 

little help.   There is no notation other than procedure calls in which to 

express patterns,   so that representation is very clumsy;   storage manage- 

ment is awkward;   in general, the language serves as a poor host. 

Extrapolating into the future,  one might expect the next generation of 

conglomerate languages to provide for combinations such as scientific 

calculation,  data processing,   string manipulation,  and discrete simulation. 

Machine tool control and information retrieval might be added in the gener- 

ation after that,  with no end in sight.   On the other hand,  the continued 

proliferation of new languages,  one or more for each application area,   is 

no better. 
2 



The solution is to be found within the milieu of programming. 

Traditionally,  programmers have chosen notation and structure to sup- 

press the constant and display the variable.   Subroutine calls,  iteration 

loops,  recursion,  data description units,  and indirect references to data 

and control are all devices to collect invariants while simultaneously 

exhibiting the points of variability.   Programming languages,  at least 

good programming languages,  are designed to give concrete realization to 

these representation schema.   In viewing the flood of application areas,   it 

is clear that the application area is a legitimate variable.   Hence,  we need 

a programming language which is itself variable over a comparable range. 

That is, we should like a language which can be extended,  modified,  and 

thereby tailored for use in a wide variety of application areas. 

What is constant in such a language is the ability to change.   That is, 

various language facilities are required to allow variation:   to accept the 

definition of extensions and act on them to produce a modified language. 

These facilities constitute the core of a variable or extensible language 

and it is precisely these constants which must be provided in the language. 

In one sense,  Algol 60 is a start at such a language.   The numerous 

proposals of the form:   "An Extension to Algol for 9T"   for 

#"e {string manipulation [Smith60], formula manipulation [Perlis66], 

discrete simulation [Dahl66],   synchronous systems [Parn66],   . . . } 

testify to the mutability of Algol 60 and the durability of the Algol strain 

under mutation.   However,  in each case, the authors of the extension 

were required to go outside of the Algol language,   indeed outside of their 

Algol system, to define and implement the extension.   The definition was 

an English-language report or paper; the implementation required re- 

writing the compiler.   Further,  each of these projects was undertaken 



separately:   there was little realization of the commonality of all projects 

in extending Algol.   Hence,  there was little done to find unifying principles 

st or mechanisms which would aid in the n+ 1     extension. 

To outline the envisioned scenario and establish some notation,   it will 

be useful to investigate how a unified extension schema could have been 

produced.   That is,   suppose these extensions were to be realized in a uni- 

fied manner from within the language;  what would be required to carry this 

out?   We might accept Algol 60 as defined in the revised report [Naur63] 

as a base language from which to start our construction.   Since Algol 60 

does not contain extension mechanisms' these must be added by rewriting 

the compiler and issuing a new report:   "An Extension to Algol for 

Creating Further Extensions."   This language — call it Algol    —   differs 

from the other augments mentioned above in that it is expected to contain 

them all,   in posse.   Hence, it is said to be a language core.   That is,  a 

core language consists of a base language plus extension facilities.   Using 

the extension facilities,   one can define a variety of extension sets,   each 

set creating a new extended language.   Pictorially, 

extension set 

Algol   *•     Algol   ^""     extension set, 
+ extension facilities 

extension set. 
l 

Algol* 

* 
The k^v point is that the extension sets are legal forms in Algol  . 

'The sole exception is the fluent but weak device of procedure call. 



There is little new in this proposal.   As early as 1960, J. Smith 

observed [Smith60] that languages properly belong to language-systems 

containing a "nested !continua! of languages.   In such systems,  new 

languages may be embedded,  appended,  extracted at will."   The idea was 

periodically rediscovered.   For example, at the Symposium of the Inter- 

national Computation Center,  Rome 1962, van der Poel [vanD62] proposed 

that "what is needed is an extremely powerful and generalized language, 

but stripped down to the utmost,  stripped down to the possibilities that it 

can,  in itself, by a sort of procedure declaration,  declare the rest of the 

mechanism needed."   Later in the conference,  C. Strachey [Strac62]   spe- 

cifically observed that "it is absolutely essential that this general language 

should have the facilities of using new syntactic forms." 

For a number of years, the idea remained an orphan:   born but not 

adopted.   Around 1966 a number of papers appeared,  proposing either core 

languages or particular extension mechanisms which could be grafted onto 

existing base languages.   For the most part, these were paper designs — 

unimplemented or only partly implemented.   However, a brief review of 

this early work will serve to illustrate the sort of extension facilities 

envisioned for an extensible language.' 

Leavenworth [Leav66] discusses application of the macro concept, 

familiar in assembly languages, to high-level languages.   Taking as illustra- 

tive base language a subset of Algol 60, he proposes that macros be used to 

extend the possible forms for two syntactic types:   (statement) and 

(primary).   For example,  a macro which defines a simple type of 

'In section 2.2 of chapter 3, we discuss in detail more recent proposals 
for extensible languages. 



(for statement)  may be specified by the macro pattern' 

(statement)   ::=    for (variable)   *■ 

(expression) to (expression)  do (statement) 

where (variable),  (expression),  and ( statement)  are syntactic types 

defined by the base (or extended) syntax.   Whenever this pattern is found 

in the source text during parsing, the matched substring is deleted and 

replaced by an expansion of the macro definition which is 

begin   $1  *-  $2 ; 

LI: jf $1 <  $3 then begin $4;  $1 «- $1 + 1 ;  goto LI  end; 

end 

The expansion is performed by replacing each instance of $i by the sub- 

string which matches the i     syntactic unit in the pattern.   The expanded 

string is then reparsed,   so that multiple levels of definition can be cleanly, 

if not efficiently,  handled. 

Cheatham [Chea66] proposes a system which generalizes this in three 

areas. 

(1) Macros may be called either during syntactic analysis,  as proposed 

by Leavenworth,  or subsequent to analysis.   In the latter case,  expansion 

corresponding to multiple levels of definition can be carried out once,  at 

definition time,  rather than on each invocation of the macro. 

(2) Also,  post-analysis macros may have their meaning expressed in the 

intermediate language of the translator,  giving additional flexibility and 

control over the semantic definition. 

'We have taken some liberties in changing the notation used by 
Leavenworth to be closer to that of Algol 60. 



(3)    Finally,  macros may be defined to be of any syntactic type in the 

language, not just (primary) and ( statement) as proposed by Leavenworth. 

Garwick [Gar67] discusses the definition of new data types and oper- 

ators which act on objects of these new types.   The core language has only 

three types:   real,  integer,  and byte.   However, the data type complex may 

be defined by the declaration 

block   complex   {real re , im} 

Here,  "block" signals a certain class of data type declaration,  "complex" 

is the name of the new data type which is defined to consist of two reals, 

the first being named "re", the second being named "im".   Subsequent to 

definition of complex, variables may be declared to have that data type 

complex   w,  z 

The components of w and z are reals and may be referenced by sub- 

scripts which use the component names.   For example/ 

w[re]   :=   z[im] 

sets the "re" component of w equal to the value of the "im" component of z. 

Since it is awkward to explicitly denote all operations on complex numbers 

in terms of their underlying structure, the various arithmetic operators 

may be extended to operate on complex quantities as well as reals and 

integers.   For example, the assignment operator is extended by the follow- 

ing definition. 

'Again,  we have changed notation, bringing it closer to Algol 60.   We there- 
by avoid explaining several idiosyncrasies of Garwick's notation which are 
irrelevant to the present discussion. 



operator    a   :=   b   defined 

if   (real a  V   integer  a)  A   complex b 

then   a   :=   b[re] 

else  if complex a A   (real b V   integer b) 

then begin a[re]   :=   b;  a[im]   :=   0   end 

else  if complex a A   complex b 

then begin a[re]   :=   b[re];    a[im]   :=   b[im]   end 

Here,  ":=" is the operator being defined; ":=" takes two actual operands 

which are denoted in the definition by the formal operands "a" and "b". 

The definition tests the types of the operands using real,  integer,  and 

complex as predicates and selects the appropriate defining body.   (Note 

that the defining bodies use ":=" as defined prior to the extension.)   In 

similar fashion,  Garwick exhibits definitions of the data types string 

(character string), vector3 (3-space vectors),  and poly (polynomials with 

real coefficients) and constructs appropriate operations over these types. 

Galler and Perlis [Gall67] take a further step.   One observes that 

operations on new data types are defined in terms of operations on their 

components.   Hence, to perform operations on instances of some defined 

type,  e.g. matrix,  it is frequently necessary to sequence over their com- 

ponents.   For example,  if A,  B,  and C are n by n matrices, 

A   :=   BXC 

should have the result 

begin integer  i, j, k ; 

for   i   := 1 step 1 until n do 

for j   :=   1 step 1 until n do 

A[i, j]   :=   innerproduct (B[i, k] , C[k, j] , k, n) 

end 

8 



where innerproduct is defined in the usual fashion using yet another 

iteration.'    Using the method of Garwick, the matrix statement 

"A   :=   B X Cn  would be interpreted as follows. 

(1) The operator MX" is called.   Since the operands are matrices, the 

matrix code is selected (at compile-time).   Execution of this code pro- 

duces a result matrix R defined R = B X C. 

(2) The operator ":=" is called, the result being that R is assigned to A. 

The point is that each operation is performed orthogonally to all others. 

While this simplifies the processing, the generation of temporaries such 

as R is logically unnecessary and wastes storage. 

The paper by Galler and Perlis is concerned principally with a method 

for automatically generating expansions such as that given above.   The 

method consists of two steps. 

(1)    Replacement of operator /operand units by their definition using a 

scheme much like the syntactic macros of Leavenworth and Cheatham, the 

difference being that a parse tree rather than string text is used as the 

program representation. 

'For example,  using the Jensen device [Ruti67] in a type procedure,  a 
possible definition is 

real procedure innerproduct (x, y, k, n); 
value n; 
real x, y;  integer k, n; 
begin real  sum ; 

sum   : =   0 ; 
for k   := lstepl until n do    sum   :=   sum + x X y; 

innerproduct   :=   sum; 
end   innerproduct 



(2)    Rearrangement of the resulting parse tree in an attempt to optimize 

the amount of temporary storage to be allotted.   This is carried out by a 

top-down search of the parse tree,  applying a set of transformation rules^ 

repeatedly,  according to certain cyclical orderings. 

While most proposals for extension facilities have been devoted to 

one or more of the three areas discussed above — syntax,  data types, 

and operators — various other areas have been put forth as candidates 

for variability (e.g.,  cf. [Perlis66]  and [Stand69]).   Most important of 

these is control,  i.e.,  allowing definition of control structures such as 

co-routines,  pseudo-parallel processes,  clock-driven simulation,  back- 

tracking,  and monitoring with interrupt capabilities.   Related to this is 

the notion of specifying evaluation rules of special forms,  possibly in 

terms of special control structures.* 

In addition to those papers cited,  a host of others has appeared in 

recent years.     Despite an abundance of research, a satisfactory extensible 

language has yet to be designed.   That is,   while there are languages,  even 

working languages,  which exhibit one or more extension mechanisms,  no 

language handles extension with the same completeness and success as, 

for example,  Algol 60 handles the expression of numerical algorithms. 

'The analogy between this and the transformation rules on deep structure 
hypothesized by linguists  [Chom65]   invites investigation.     While such 
investigation lies outside the scope of this work,  we feel it may be quite 
significant and intend to pursue it elsewhere. 

+ For example,   one  might  introduce the  notion of a  parallel case 
expression in which the selection produces a set of integers (instead of 
the normal integer) in which case,  all the corresponding statements are 
evaluated in parallel,  producing as result a list of the individual results. 

^In chapter 3, section 2.2, we give a reasonably complete list of extensible 
language projects. 
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In many respects,    the field is in the  same  state as was the field of 

languages for numerical algorithms around 1954, 1955.  There are languages 

which can claim the appelation "extensible", but the claim is weak and it 

is clear that these languages are but first steps.    To quote again from 

Strachey [Strac62],  "This proposal [an extensible language] is not one that 

can be laid down in advance,  which can be worked out by an international 

committee,  is is really a difficult problem." 

It is our contention that even now,  a really satisfactory extensible 

language is several years away.   Much research remains to be done in 

each of the three principal components which constitute an extensible 

language: 

(1) the base language,  its theoretical foundations,  its design,  and 

its specification, 

(2) the extension facilities, their mechanism,  and their theory, 

(3) the definition sets,  their creation and interaction. 

While some of this work can be carried out in conjunction with a language 

development and implementation project,  other topics may be pursued in 

purely theoretical investigations. 

This thesis is a study of two specific issues in extensible languages: 

(1) formal syntactic specification,  and (2) design and formal specification 

of a base language.   The thesis does not attempt design of a complete 

extensible language and system,  nor does it attempt to integrate the two 

issues into a partial extensible language.   The issues are largely orthogo- 

nal and we have chosen to treat them independently.   Consequently, the 

two studies are autonomous;  each is presented in a separate,   self- 

contained paper. 

11 



In the formal syntactic specification of an extensible programming 

language,  the salient characteristic is that the language must be allowed 

to grow.   Assuming that the language is specified by a context-free 

grammar,  this is equivalent to requiring that the grammar be permitted 

to grow.   Additions to the grammar are derived from extensions state- 

ments made in the language.   For example,  the macro pattern of 

Leaven worth, 

(statement) ::= for (variable) *■ (expression) to (expression) do (statement) 

which is a declaration permitted in a (blockhead),  may be interpreted as a 

new production to be added to the grammar.   To generalize,  one might 

consider a class of grammars in which the production rules used in the 

derivation of a string are determined in part by the string itself.   Note that 

this requires that the initial grammar must allow the generation of strings 

which contain substrings interpretable as productions. 

In chapter 2,  we study the theory and application of such grammars, 

which we term extensible context-free.   We first examine formal proper- 

ties such as structural results,  closure,  undecidability results,  restricted 

cases,  and relation to other models in formal language theory.   Subse- 

quently,  we discuss the parsing of languages specified by extensible 

context-free grammars,  we state and prove the validity of a recognition 

algorithm,  and we outline how this may be converted to a parse algorithm. 

We conclude the chapter with a discussion of the extensible context-free 

formalism,   some open problems in its theory,  and its application to the 

broader issue of constructing extensible programming languages. 

Study of the design and formal specification of a base language 

perhaps requires some justification.   It might,  for example,  be argued 

that any language can be made extensible by grafting on extension facilities; 

12 



hence,  one might (erroneously) conclude that the question of a base 

language is vacuous.   It is true,  of course, that many languages can be 

improved by such grafting.   Further,   in some circumstances desire for 

compatibility may dictate that a language in extensive use be so upgraded 

rather than replaced.   However,  where such considerations are not over- 

riding,  it seems decidedly advantageous to employ a base language 

designed with extensibility in mind.   Conventional programming languages 

lack,  often explicitly deny,  the generality required of an extensible base. 

At the same time,   such languages are frequently far more complex than a 

base language should be.   One could,  in principle,   start with a conventional 

language,  generalize by removing restrictions,   simplify by removing 

special case mechanisms,  and arrive at an acceptable base.   It seemed 

easier,  however,  to start afresh.   It was our belief that by so doing,  we 

could improve considerably upon existing languages and produce a language 

more simple and parsimonious, yet more general and powerful.   We have 

designed such a base language,  named MEL1M.   Chapter 3 discusses its 

design and formal specification. 

Concern with a formal specification perhaps also requires justification. 

In describing a programming language,  the main goal is to explain how to 

write programs in it and what such programs mean.   The former is 

syntactic specification,  the latter,   semantic specification.   With relatively 

unimportant exceptions,   syntax is satisfactorily specified in the frame- 

work of context-free grammars.   These are suitable not only for human 

consumption but also as the basis for mechanical parsing.   Further,  as 

discussed in chapter 2, they can be cleanly augmented to handle languages 

which grow by the addition of new syntax rules.   By and large,  we have a 

good handle on syntactic specification.   However, turning to semantic 

13 



specification,  we find no parallel success.   Most programming languages 

have their semantics specified by natural language descriptions (usually in 

English).   These are generally imprecise,  ambiguous,  lacking in detail, 

and otherwise unsatisfactory.   Even after careful reading of such a defining 

report, uncertainty as to the meaning of one or more constructions is 

generally the rule rather than the exception.   On the other hand,  repeated 

attempts' to define programming languages in terms of semantic formal- 

isms such as the \-calculus or Markov algorithms have fared no better. 

Hence, the formal semantic specification of programming languages is a 

nontrivial matter of considerable importance. 

We wish to emphasize that this thesis embraces only two topics of a 

potentially far larger study of extensible languages.   Several important 

issues still require solution,  many others invite investigation,  and doubt- 

lessly still others will be uncovered as simpler problems are solved.   Two 

that seem important at this point are (1) relating a simple facility for oper- 

ator definition to the syntax mechanism,  and (2) global resolution of 

meaning.   We will outline these in turn. 

While an extensible context-free grammar provides complete control 

over the syntax,  it may prove more powerful than appropriate and hence 

somewhat awkward to use for simple cases.   For example,  a new arithme- 

tic infix operator "OJD",  with binding strength between "+M and !f#n,   could 

be added to Algol 60 by redefining the necessary productions;^ however,  it 

'These various attempts are reviewed in section 2.1 of chapter 3. 

■^Specifically,   in section 3.3.1 of [Naur63],   we delete 
(term)   ::= (factor) | (term) (multiplying operator) (factor) 

and add 
(term)   ::= (term2) | (term) op (term2) 
(term2)   :: =   (factor) | (term2) (multiplying operator) (factor) 
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would be  preferable to  simply define 

operator op priority + < OJD < X means  .   .   . 

and have the appropriate changes to the syntax generated automatically. 

Allowing this facility and generalizing it to the various syntactic forms 

which may be regarded as "distributed" operators (e.g.,  Algol's 

if-then-else) requires some study.   In general, the construction of face- 

plates which make complicated mechanisms easily available for simple 

uses is a matter which deserves attention. 

Global resolution of meaning refers to a possible generalization of 

the Galler-Perlis paper discussed earlier.   Given an expression composed 

of objects of some defined data type and operators acting on these objects, 

e.g., 

A1   oPl   (A2   op2   A3) 

it is frequently the case that direct application of operators to operands  is 

wasteful of some computer resource.   We should like to allow the action of 

op« to be nonorthogonal to op-.   In general,  we should like to allow the 

meaning of a form and its evaluation to depend upon the context in which it 

appears.   Galler and Perlis treat the case where the interaction is a parse- 

tree rearrangement intended to optimize the amount of temporary storage 

required.   As noted in a codicil to their paper,  certain circumstances 

require the optimization of other resources (e.g., time),  which may be 

carried out by different sets of transformation rules.   They point out: 

"The important lesson here is that one should have available not only a 

variety of definitions,  but a variety of substitution and tree-arrangement 

strategies."   Investigation of such strategies and their generalization in a 

system which allows the programmer to specify transformation rules 
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requires considerable study.   While this area is presently ill-defined and 

ill-developed,  we believe it will eventually prove a source of significant 

power in extensible programming languages. 
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Chapter  2 

EXTENSIBLE  CONTEXT-FREE   LANGUAGES 

Section 1.   INTRODUCTION 

In this chapter we   present a class   of   grammars   designed   for 

the syntactic description of extensible programming languages.   These 

grammars employ a departure from conventional syntactic formalisms 

in that their syntax is not fixed, but rather is made variable. 

This notion is best introduced by a review of the simpler case. 

In a conventional grammar, there is a fixed body of syntax rules and 

a set of instructions for using these rules to generate the legal strings 

of the language.   Various types of syntax rules and various sets of 

instructions for using these rules form classes of grammars.     The 

most familiar instance of this descriptive method is Algol [Naur63], 

whose grammar is of the class "context-free".   Its syntax rules are all 

rewriting rules (a-+ß) with a single symbol on the left-hand side of the 

replacement arrow.   The single,  implicit instruction is a replacement 

rule:   if aAß is an intermediate string and A-*? is a rule,  then ayß is 

an intermediate string.   Many other classes of grammars have been 

proposed for the description of programming and natural languages. 

All share a common trait:   for each grammar,  the set of syntax rules 

is a fixed,  finite set.   This is satisfactory so long as the language has 

a fixed,  predetermined syntax. 

We assume the reader is familiar with the notion of an extensible 

programming language,  e.g.,   [Bell68],   [Chea66],   [Chea68],   [Gall67], 
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[Gar6 8].   By this term,  we mean a higher level language which includes 

mechanisms with which the user can extend the language to facilitate its 

use in various application areas.   One useful facility of such a language 

is a means whereby new syntactic forms can be added to the language for 

local use.   To take a concrete — and somewhat restricted — example, 

suppose such a facility were added to Algol,  resulting in a new language 

called Algol-E.   In Algol,  one may declare new variables and new pro- 

cedures in the blockhead of each block.   In Algol-E,  one may addition- 

ally declare new syntax rules whose scope is that block and all blocks it 

contains.   It might be useful to allow deletion of existing productions as 

well as addition of new ones,   so that for each block the set of production 

rules,  P.,  is given by: 

P. = P. Up.   - p.,, 
i        10 ia        id 

where P.    is the production set of the immediately containing block, 

P.    is the set of productions declared in the blockhead as added,  and 

P. , is the set of productions declared as deleted. 

For example,  a block with a restricted for statement might contain 

a declaration: 

production [[(for list element)  —   (arithmetic expression) to 

(arithmetic expression)]], 

[(for list element)  -f*   (arithmetic expression) step 

(arithmetic expression) until (arithmetic expression)]]. 

Each production is enclosed in the brackets "[["   and " J";  a right arrow 

indicates a rule is being added;  a slashed arrow indicates a rule being 

deleted from the production set.   Within the block,  forms like 
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"for i := 1 to n do . . . " are legal,  while the more general form 

"for  i := 1 step  s until n do ..." is not. 

For new forms to be useful,  it is necessary to specify semantics as 

well as syntax.   Associated with each production being added would be a 

definition of its meaning expressed in terms of the semantics of the en- 

closing block.   This raises a set of issues concerning semantic vari- 

ability.   We will not deal with these issues in this chapter.  Our interest 

here is in syntactic variability:   how this can be formalized,  what 

properties are thereby obtained,  and how strings with variable syntax 

can be parsed. 

While our primary interest is in the variability of syntactic forms 

per se,  one special case is of particular interest.   It will be recalled 

that the form of a legal Algol program is only partially specified by its 

context-free grammar;  other restrictions are described by the English 

text.   It has been shown that some of these restrictions cannot,  even in 

principle,  be expressed by a context-free grammar.   In particular,  the 

requirement that all variables be declared is such a restriction.   It has 

been suggested,   [DiFor63], that a declaration (e.g.,  real temperature;) 

may be regarded as specifying a new syntax rule (e.g.,    production 

[(variable identifier/ ■*   temperature]);).   If this convention is adopted 

and the rule "(variable identifier)   -»   (identifier)" is deleted from the 

syntax of Algol, then it is guaranteed that only declared variable names 

may be used in block bodies.   It should be noted that such conventions 

cannot be used to specify all of the non-context-free restrictions.   We 

have not,  for example,  made the necessary provision that a variable 

may not be declared in two conflicting ways.   However,  it is of interest 
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to note that a partial solution to a standing problem in language specifi- 

cation drops out as a special case of syntactic variability. 

There is a substantial body of research by others  (e.g.,    [Aho68] , 

[Aho69a],   [Aho69b] ,   [Fisch68] ,   [Gins67] ,   [Gins68b] ,   [Greib68] ,  [Ros69], 

[Whit6 8a],  [Whit68b] ,   [Whit68c] ,   [Whit69] )  into classes of grammars 

which generalize the context-free.   Much of this work has been motivated 

by a desire to model non-context-free restrictions on conventional pro- 

gramming languages.   However,  there has been little research into the 

formal properties of extensible languages.   Bell [Bell68]  describes an 

extensible language defined by a grammar belonging to a class he terms 

priority BNF.   However,   since priority BNF grammars generate the 

recursively enumerable sets,    most questions of interest,  including 

membership,  are undecidable. 

* 
Although this is not discussed in Bell's work,   it is entirely straight- 

forward to show that any Turing machine can be imitated by a priority 
BNF grammar. 
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Section 2.   THE  FORMALISM 

2.1   PRELIMINARY REMARKS 

We now turn to a specific formalism which embodies the notion 

of variable syntax.   We will define a class of grammars,  the extensible 

context-free (ECF),  which contains grammars such as those discussed 

in the previous section.   Before doing so,  however,  we wish to gener- 

alize these examples somewhat. 

The definition of local syntax in terms of a local production set 

for each block is clearly dependent upon Algol's block structure.   In 

other languages,  the block structure might be substantially modified, 

or entirely absent.   To obtain a formalism which does not depend on 

language idiosyncrasy,  we adopt the convention that string "structure" 

will be ignored,  and new productions may be used anywhere in the string 

to the right of the point at which they are declared.   This is made well- 

defined if rewriting rules are applied only to the leftmost nonterminal. 

(This is,  of course,  no restriction on the weak generative power of 

context-free grammars.)   Hence,   at any stage of a derivation the string 

will have the form  xAa,  where x is a terminal string,  A is a non- 

terminal,  and a is an arbitrary string of terminals and nonterminals. 

The local production set is determined by the productions initially in 

the syntax and by those which appear in the string x.   The local pro- 

duction set,  in turn,   specifies in what ways A  may be rewritten. 

The second generalization we shall make is that the new pro- 

ductions need not appear explicitly in the terminal string,   so long as 
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they can be derived from it. Part of each ECF grammar will be a finite 

state machine with output,  or finite state transducer.   The finite state 

transducer (FST) takes the terminal string as input and outputs the 

associated set of productions.   This mapping serves several functions, 

the most important of which is to allow the specification of productions 

involving nonterminal symbols by means of a string of terminals.   For, 

by definition,   a nonterminal cannot appear in a terminal string; yet 

each production must contain at least one nonterminal.   The mapping 

also permits the formalism to cover extensible languages in which syn- 

tactic extensions are not stated explicitly as productions,  but rather by 

means of macro forms or operator definitions.   The latter forms may 

be distinctly preferable to some classes of users. 

To coordinate the two activities — generation via the syntax rules 

and change of syntax rules due to the output of the FST — we amend the 

above description as follows.    At any stage of derivation,   let the string 

be xAtf.   The local production set is given by:   (1) the initial productions, 

and (2) the output of the FST given x as input. 

An example may help make this clear.    Consider a grammar with 

terminal vocabulary {a, b, c},  nonterminal vocabulary {X, F, S},   and 

initial production set: 

X - FcS 

F - aFIbFI a Ib 
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The finite state transducer is specified by its state transition diagram: 

%0 
a/US- a W c/B 

b/H S — b 

where q    is the start state and all transitions not explicitly specified 

lead to a "dead" state.   A sample derivation by this grammar is: 

X =» FcS =* aFcS => abFcs i> abaaabcS 

At this point,  the FST acting on the initial terminal string has output a 

complete production: [[S -» abaaabj .   Hence,  the local production set is: 

X -* FcS 

F - aF I bF I a I b 

S -* abaaab 

The derivation concludes with a final step 

abaaabcS =» abaaabcabaaab 

Clearly,  the language generated by the grammar is {wcw I we{a,b} }, 

which is known not to be context-free. 

A state transition diagram is interpreted as follows. The nodes repre- 
sent states; the arcs between them represent transitions. Consider, for 
example, 

b/ß o o 
«1 q2 

This is read:   when in state q.. if the input is "b" then output "ß" and go 
into state q«. 
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One final generalization is required.   In the above example,  the 

nonterminal vocabulary was fixed,  and the single new production 

employed one of these nonterminals on its left-hand side.   A character- 

istic property of grammars is that they use a finite vocabulary,  and in 

particular a finite number of nonterminals.   For any language having 

a fixed syntax, this is quite acceptable:   The set of productions being 

finite,  the number of nonterminals is a fortiori also finite.   However, 

if the production set is allowed to grow,  any given finite set of non- 

terminals may be found to be too small.   We wish to consider languages 

whose local syntax may be of arbitrary complexity; this,   in general, 

requires an unbounded set of nonterminals.   (We show,  in Appendix I, 

that given a terminal vocabulary of more than two symbols and any 

integer  k,  there exists a context-free language such that any context- 

free grammar which generates the language uses at least k nontermi- 

nal symbols.) 

To provide for an unbounded set of nonterminals and still work 

within a finite vocabulary,   it is necessary to use some sort of encoding. 

This is,  of course,  precisely what is done in the Algol report.   We may 

regard a syntax rule "(letter) : := a" either as a context-free production 

with right-hand side "a" and left-hand side the single nonterminal 

"(letter)",  or with equal validity as a Type-O production whose left- 

hand side consists of the eight symbols: "(", "1", " e", "t", "tf\ "eM, "r", ") ", 

We shall take the latter viewpoint. 

For any given ECF grammar,  let the terminal vocabulary be Z, 

let the total vocabulary be V,  and let the FST have output vocabulary A, 

with Z C A.   We assume that A includes a set of six distinguished symbols 

r = { I >   L   "**   ~h> ( > ) } and that r is disjoint from Z.    Let V    - V - Z - T, 
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let VM ={(w}| we Z   },  and let I = VNU VM.   New productions are 

taken to be those substrings of the FST output having the form 

[[Ape*]]      where      A e I, 

P e {—, /-},    and 

ae  (iUl)* 

We thereby place strict requirements on the form of substrings which 

may be rewritten.   This guarantees that generation behavior is essenti- 

ally context-free in the sense that information may not be passed along 

in the string.   In accord with common parlance,  we refer to I as the 

set of intermediate symbols,  with the understanding that a member of 

I may actually be a character string. 

2.2   FORMAL  DEFINITION 

In the preceding discussion,  we made use of a number of notions 

in an informal fashion,  depending on the reader's intuition for their 

meaning.   We now proceed to give precise definitions of these notions. 

Our goal will be a formal definition of ECF languages. 

Definition 2.2.1.    A finite state transducer with accepting states (FST) 

is a 7-tuple T = (K, Z, A, 6, X, q , F),  where K is a finite set of states, 

F C K,  where Z and A are finite input and output vocabularies, 

respectively,  and where q    e K is the initial state.   6 is the transition 

function 6:   KXZ -* K,  and X is the output function X:   K X Z -* A   .   The 

functions 6 and X are extended so that 6 : K X Z   -* K and X: K X Z   -♦ A 
* 

by the following definitions: 

6(q, e) = X(q, e) = e 

6(q, xa) = 6(6(q, x),a) 

X(q, xa) = X(q, x) X(6(q, x), a) V x e Z  ,      a e Z,      q e K. 

#  
We use the symbol "e" to denote the empty string. 
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If  w c Z' ,   then T(w) is defined to be  \(q  , w);   if L r Z ,   then T(L) is 

defined to be {T(w) I w e L}.   If we z',  we say T  accepts  w if 

6(qQ, w) e F. 

Definition 2.2. 2.     An extensible context-free (ECF) grammar is an 

11-tuple G = (V,Z,P   ,X, T,<, >, I, L —, /»),   where V is a finite set 

of symbols,    Zr Vis the terminal vocabulary,  X e V - Z is the initial 

symbol,   and  r = {<,>, B , B f -*,/•>} C V - Z.   We define VN = V - Z - r, 

VM = {< w> ' w c s+}>    I = VNU VM,   and   V = I U Z.     PQ is a set of 

initial productions,   each of the form A -* a,  where A e I and a e V  . 

Finally,  T  is a finite state transducer  T = (K, Z , 2» , 6, X, q  , F) 

where 2'  C V. 

Remark.     For brevity of notation,   the special symbols "(",   ")", "[", 

',   and "/»" will henceforth be assumed to be present,  and an ii itii    ti    it 

ECF grammar will be specified as a 5-tuple G = (V, Z, P   , X, T). 

Note that while V is the vocabulary,  V is the effective vocabulary, 

for symbol strings of the form (w) (where w e Z ) act as single elements. 

Let G be an ECF grammar.   The language,  L(G),  generated by 

G  is defined by specifying (1) the form of an instantaneous description, 

and  (2) the transitions which take an instantaneous description into its 

possible successors. 

Definition 2.2.3.     An instantaneous description (ID) of an ECF grammar 

G = (V, Z, P  , X, T) is an element of 2* X V*. 

Let it = (w, 7) be an instantaneous description.   T(w) is the output 

of the finite state transfucer T  for the  ID  jr.     This output,   taken 

together with the initial production set P  ,   determines the set,   P  ,   of 

legal productions applicable to jr.   We refer to P    (or to P,  when ir is 

understood) as the local production set.   Denoting the projection function 
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which maps IT into its first component by U,   we write: 

P?r= 1P(P0,T(U(»))), 

where D?   is specified by the following procedure. 

The string T(U(7r)) contains a unique set of disjoint substrings, 

each of the form: 

[Apa] where        A € I, 

p e {—, ■/*}      and 

a e V  . 

It is possible that T(U(7r)) contains no such substrings.   However,  if it 

contains any,  they are guaranteed to be uniquely defined and disjoint 

since   [[, ]| { VU {—►, /»}.   There will be finitely many such sub- 

strings,   say N;  let them be indexed and let  </>. = A.p.a.  for  i=l, ... ,N. 

Then P.,P2, ... PN are defined as follows: 

for     i = 1, . . . N 

if Pl-"-" then P. ^P.^U {<».},  else P. = F^ - {*.}. 

Finally,  define P    = P.,. J 7T N 

The transition between an ID IT and a successor IT
1
 is denoted by 

7T =4 7rf  and is obtained as follows: 

(1) If (A-a) e P   ,  then 
IT 

IT = (w, A/3) -> (w, aß) = ir' . 

(2) If a e Z,  then 

7T = (w, aß) =» (wa, ß) = 7Tf . 

m 
The extension of =»  is denoted ==»  and is defined by: 

7T —* irr (m ^ 0)  if 3   ID's   7T  , 9T-, ... 7T      such that o     1 m 

o 1 m 
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Finally,   the transitive extension is denoted by =^=>  and is defined: 

7T JL$ 7J-'  if 3 m (0 ^ m < oo)   such that   TT *—» TT
T
 . 

Definition 2.2.4     Let w = a,  ... a    €   2 .   A derivation,   II,  of  w is a   1 n  ' 

sequence of ID's  II = IT  , IT, ... TT      such that n o m 

(1) TTO = (e,X), 

(2) 7T. ■* 7T.+ 1 i = 0, ... m-1, 

(3) TT     
s (w, 7)      for some  7 e  V  . 

A derivation n = n    ...IT     is said to be terminal if TT     - (w, e). o m   m      *   *   ' 

A derivation II = TT    ... TT     is said to use a production A — a if o m  ^  

3  i (0 ^ i ^ m-1) such that w. = (w, A7)   and  TT.   . = (w,ay) for some 7. 

Remark.     When speaking informally,   it will frequently be useful to 

write an ID  7r = (w, j3)  in the simpler form "wß".   Analogously,   a deri- 

vation (e,X) =^ (w, 7) will sometimes be written "X =^=$ wy".   Context 

will make clear which use of the transition symbol is intended. 

Definition 2.2.5.     Let G = (V, Z, P   , X, T) be an ECF grammar.   The 

language generated bv_ _G  is defined to be: 

L(G)={w|(e,X)4(w,e)   and     6T(qQ, w)   c FT }, 

where 6T and FT are the transition function and accepting states of T. 

The above definition of instantaneous description and ID transition 

has the virtue of simplicity,   but viewed as a computational procedure 

it is incredibly inefficient.   It blithely ignores an essential property of 

ECF derivations:    i.e.,  if  II = TT    ... TT      is a derivation,  then  U<7r.) is o m i' 

monotone nondecreasing as a function of  i.    This monotonicity makes it 

possible to compute P     by incremental techniques,   adjusting the local 
i 
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production set as new productions are added to the right end of T(U(7r.)). 

In Section 4.2,  we will discuss an alternate development of instantaneous 

descriptions which makes use of this property. 

2.3   EXAMPLES 

A few examples may help to illustrate the generative power of the 

above formalism.   The first of these will be frequently used in later 

discussion. 

In these examples and elsewhere in this paper,  it will be con- 

venient to specify an FST by means of a state transition diagram instead 

of by an explicit definition of its transition and output functions.   These 

diagrams will be simplified if we adopt the convention that all unspeci- 

fied transitions lead to a dead state.   The dead state emits no output 

(i.e.,  gives the empty string as output) and is a nonaccepting state (i.e., 

does not belong to FT).   Also,  unless specifically stated otherwise, 

all states explicitly shown in a state transition diagram are accept- 

ing states. 

Example 2.3.1   (non-primes ^ 4 preceded by a factor). 

The language {anba'n+1'm | n ^ 1,  m s* 2} is generated by 

G = (V,Z,Po,X,T),  where V = {X, N, A, R, a, b, [ , ]] , -, f, < , ) }, 

I = {a, b},  and P    is given by: 

X — AbRN 

A — a A | a 

N — RN|R. 
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The finite state transducer is specified by: 

a/a 

Q a/HR-^a V* b/aj o a/lLn   a -o 

This grammar,  which is similar to Fischer's Example 1.2.2 [Fisch68], 

generates a string of one or more  afs,  followed by two or more repe- 

titions of the initial string of a's. 

Example 2.3.2     (a very simple algebraic language in which variables 

must be declared). 

The initial productions are: 

(block)-* (blockhead) ; (compound tail) 

(blockhead) — begin (declaration) | (blockhead); (declaration) 

(declaration) — declare (name) 

(name) -* (letter) | (letter) (name) 

(letter) -*a|b|c|...|y|z 

(compound tail) -* (statement) end [ (statement) ;  (compound tail) 

(statement) ■* (identifier) := (expression) 

(expression) -» (identifier) | (identifier) + (expression) . 

It will be noted that there are no rewriting rules with "(identifier)" as 

left-hand side.   This,  however,   is remedied by the FST: 
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declare/ [[ (identifier) 

x/e 

Vx * declare 

This grammar is a particularly simple form of the Algol-like grammar 

discussed in the Introduction.   The form (declarations) consists of the 

symbol "declare",  followed by a string over the alphabet {a, b, c,... z}, 

delimited by a semicolon.   For each such declaration,  a new production 

is adjoined to P. 

Example 2. 3.3   (the encodement of a context-free grammar followed by 

a string generated by that grammar). 

This example is a schema for a set of ECF grammars,  one for 

each possible terminal vocabulary.   Let Z be a (finite) terminal vocabu- 

lary.   We construct an ECF grammar which generates strings consist- 

ing of the encodement of an arbitrary context-free grammar with 

terminal vocabulary E,  followed by a string belonging to that context- 

free language. 

Let G = (V, Z, X, P     T) where Z = lU{i,  > ,  $ },   and where 

V = I U {X, E, R, N, M, L, S, A, <,>,-,/-, [ , ] }.     PQ is given by: 

X — E < G >      for some o e 

E — RE| R 

R-NS$ 

N — i M > 

- + 
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M — LM | L 

L — i Vi e Z 

S — AS | e 

A ^ N I L 

The finite state transducer is specified by the following diagram: 

t/i   V k e  I 

i/i   VleZ x/x  V x e  Z - {$} 

The grammar operates as follows.   It first generates a sequence 

of substrings,  each of the form 
- + 

K w 3> a $        where   w e Z    , 

and   a € (lU iZ+ })*, 

each interpreted as a production 

< w> — # . 

This results in a local production set P = P    U Pf.   Then a string is 

generated by a context-free derivation from the production set Pf. 

For any context-free grammar G    having terminal vocabulary Z,   and 
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any w e   L(G ),  there is some string in this language consisting of an 

encodement of G    followed by  w. 
c J 

Remark.     By suitable modification of this ECF grammar,   it is possible 

to restrict the set of productions P' to any of the following classes: 

regular productions,  linear productions,   intermediate constituent form, 

or Greibach normal form. 
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Section 3.   FORMAL  PROPERTIES 

In this section,   the formal properties of ECF languages will be 

explored.   We study some of the usual characteristics of formal 

languages:   closure under various operations,  the membership problem, 

the emptiness problem,   and a few related questions.    We then examine 

a number of possible restrictions on the form of new productions and 

show that these lead to restricted classes of languages,  thereby giving 

negative answers to certain questions concerning canonical form. 

Finally,   we relate ECF grammars to other generalizations of the 

context-free. 

3.1   STRUCTURAL  PROPERTIES 

We begin with a characterization of those productions output by 

the FST which make the associated language ECF but not CF (i.e., 

inherently ECF). 

Definition 3.1.1.     Let G = (V, I, X, P   , T) be an ECF grammar.   If w e V , 

the length of w, I w I ,   is defined as follows: 

(1) lei - 0 

(2) lal = 1 V a e ZU VN 

(3) if   A e  VM,  A = ( aj ... an>  where  a, e I,  then I A I = n + 2 

(4) if   w = w- w«   where   w    w<;) e  V  ,  then I w I = I w- I + I w« I . 

Definition 3.1.2.     Let <j> = A — a be a production.   The length of </>, I <j> I , 

is defined to be I <M - I A I + I a I . 
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We next define the term "rule length bounded"  as applied to a 

variety of objects,  culminating in the definition of a rule length bounded 

grammar. 

Definition 3.1.3. 

(1) Let w e   L(G),   and let II be a terminal derivation of w.     n is 

rule length bounded with constant  k (RLB-k) if,  for each production <j> 

used in II,   I $ \ ^ k. 

(2) Let w €   L(G).   The string  w  is RLB-k if 3 a terminal derivation, 

II ,  of w which is RLB-k. 

(3) Let G be an ECF grammar.   G  is RLB-k ifVwc   L(G),  w is 

RLB-k.   G  is rule length bounded if it is RLB-k for some integer  k. 

Our first theorem asserts that if a grammar is rule length 

bounded,  then its language is only context-free.   Loosely speaking,  this 

shows that a context-free grammar given the additional power to add 

new productions which are RLB is still only context-free. 

Theorem 3.1.1.     If G  is a rule length bounded ECF grammar,  then 

L(G) is a context-free language. 

Proof (by pda argument). 

Let G = (V, Z, X, P   , T) be RLB-k.    Let the number of elements in 

V, #(V),  be N.   Then the number of possible distinct productions is 

bounded by N   .   Hence,  the number of possible distinct production sets 

Nk 

is bounded by 2     .   Since this is finite,  we can construct a 
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nondeterministic pushdown automaton    which accepts precisely the 

language L(G). 

We sketch the construction.    The action of the pushdown automata 

(pda) is nondeterministic,  top-down,   predictive.    Corresponding to a 

production A ■* a,   we have the pda step (q,w,yA) h(qJw,yo'   ) for an 

appropriate state  q.   We need only show that it is possible to determine 

the appropriate states;  i.e.,  that the finite state control can keep track 

of which productions are valid at any point in the derivation. 

The finite state control is essentially a cross-product con- 

struction of N    components,   in which the "active" productions are 

recorded one production per component.   The start state corresponds 

to the production set P   .   As each symbol of input is read,  the FST 

mapping is imitated.   The FST output,   which represents a sequence of 

productions,  is reflected in the machine state.   For each production 

added or deleted,   a record is made in the corresponding cross-product 

component. 

So constructed, the pda performs at random some legal gener- 

ation (legal in the ECF sense) of the grammar G. The pda accepts if 

and only if the string so generated is identical to the input string. □ 

Remark.     The converse does not hold.   There exist ECF languages 

which are context-free but which are defined by ECF grammars that 

In the course of this paper,  we will use a number of standard types of 
automata.   Since these automata frequently appear in the literature,  we 
assume familiarity with them on the part of the reader.   However, since 
there is no universally accepted notation for these machines,  this is a 
source of possible confusion.   Hence,   in Appendix II,  we give the defi- 
nitions and notations used in this paper for these automata. 
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are not rule length bounded.   For example,  consider {a   ca  In ^ l}, 

defined by a grammar which uses the first string of a's to form a pro- 

duction used to generate the second string of a's. 

Suppose some ECF grammar is not rule length bounded.   It will, 

however,  contain some subset which is.   This subset is context-free. 

Definition 3.1.4.     Let G be an ECF grammar and let k be an integer. 

We define L(G)/k as 

{we L(G)| w is RLB-k}. 

Corollary 3.1.2 

For any ECF grammar G,   and any integer  k,   L(G)/k is context- 

free. 

Corollary 3.1.3 

Let G be an ECF grammar whose language,   L,  is not context- 

free.   Then V k,   L - L/k is infinite. 

Proof 

Suppose the contrary.    If for some  k,   L - L/k were finite,  then 

there exists a finite set of ad hoc rules which produce L - L/k.   Adjoin 

this set of rules to a context-free grammar which generates L/k.   This 

yields a context-free grammar for  L.   Contradiction. □ 

It is well known that any context-free grammar whose terminal 

vocabulary is a single letter generates a regular set.   Using this result 

and the above theorem,   it can be shown that an identical result holds for 

ECF grammars.   The idea is straightforward:    if the terminal vocabu- 

lary is a single letter,  there is a bound on the length of productions 

emitted by the FST.   Hence,  the grammar must be rule length bounded. 
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Since the language is therefore context-free,  it is also regular.   We 

need only show that the productions are,   in fact,  bounded in length. 

Theorem 3.1.4 

Let G = (V,{a}, P   , X,T)  be an ECF grammar,  where 

T = (K, {a}, A, 6, A, q  , F).    Then there exists an integer  k such that if 

^[[A - ß]n2 6 T(L(G)),  then   | A - 0 | ^ k. 

Proof 

We show the stronger result:     if n. [[ A — ß] n 2 e  T(a'),  then 

I I * I A — ß | < k.    Since L(G) Q a   ,   the desired result follows from this. 

Let q   = 6(q  , a ).   Since  T  is deterministic,  this is well defined 

for all  i.   Consider the infinite sequence  q  ,q  ,...q  ,...   .    Let the 

number of elements in  K be denoted by #(K).    For some  i (i ^ (#K)) 

and some  j  (j ^ #(K) +1),   we have q   = q^  and  i < j .    Let  p = j - i. 

Since  T  is deterministic,   it must repeat the cycle;  hence, 

qi+k m qi+tp+k      v tk^0 

The infinite sequence of states must have the form 

12 i-1,  i   i+1 i+P-l\* q   q    ...  q        (q   q ...  q    H     )    . 

Any finite sequence whose length exceeds  i must have the form 

12 i-1/  i   i+1 i+p-lx
n    i   i+1 i+s q   q    ... q       (q  q        ... q    K    )    q q        ... q 

with n ^ 0  and  0 ^ s ^ p - 2.   Since the output depends only on the state, 

let p    = X(q  , a) V ft.    Then any output string produced by T  whose 

length exceeds \p   ... p   |   must have the form 

1 i-L   i        i+p-Ln    i i+s p    ... p      (p   ... p    *     )    p   ... p 

for some  n^O,    0^s^p-2. 
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If such a string contains a substring m. 6 m„  where m., m« e V, 

6 e V    and m1 and m~ are not in  6,  then | 6 | < |p    ... p    P      | . 

Letting m. = J,    6 = A ■* ß   and   m2 = ]|,  this gives the result 

claimed. D 

Corollary 3.1.5 

Let G be an ECF grammar whose terminal vocabulary is a 

single symbol,  then L(G) is regular. 

3.2   CLOSURE 

In this section we will examine the closure behavior of the family 

of ECF languages,  under various operations.   We show closure under 

several standard operations and under an operation which may be 

interpreted as reversible translation.   However,  we also show non- 

closure under homomorphism (even non-erasing).   Hence, the family of 

ECF languages does not form an AFL (i.e.,  abstract family of languages, 

cf.  [Gins68a]). 

Theorem 3.2.1 

Let G be an ECF grammar,  let  L = L(G),   and let R be a 

regular set.   Then the following are ECF languages: 

(a) LOR 

(b) LU R. 

Proof 

(a)   L O R is a standard cross-product construction.   Its 

grammar is that of  L with one modification:   the states of the new FST 

have an additional component which imitates the action of a regular 
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automaton that accepts  R.   The modified FST accepts if and only if 

both the regular automaton and the old FST would have accepted. 

(b)   L U R is a variant of the above construction.   Its grammar 

is obtained by making two modifications to G.     (1)   To P    is added a 

set of productions,   P   (  which generate  Z  .   If these productions are 

written using symbols not in the output vocabulary of T,  it is guaran- 

teed that members of P '  will never be deleted and that there will be o 

no interaction between these and other rules.     (2)   The states of the 

new FST have an additional component which is used to imitate the 

action of a regular automaton that accepts R.   The new FST accepts 

if either the regular automaton or the old FST would have accepted. 

Theorem 3.2.2 

The family of ECF languages is not closed under homomorphism 

(even length-preserving homomorphism). 

Proof 

Example 2.3.1 demonstrates that  L = {anba*n+1*m| n ^ 1, m ^ 2} 

is an ECF language.    Let  h: {a, b} — {a} be a homomorphism, defined by 

h(a) ■ h(b) * a.   Let  L' - h(L) = {apq| p s* 2, q £ 3}.   This consists of all 

possible strings of a's whose length is non-prime and greater than or 

equal to six.   Clearly,   Lf  is not regular.   Hence,  by Corollary 3.1.5, 

Lf  is not ECF. n 

Corollary 3.2.3 

The family of ECF languages is not an AFL [Gins6 8a] . 
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Definition 3.2.1.     Let Lj and L2 be languages.   The left quotient of  L2 

by  L.  is defined to be 

L.\L2 = {y| 3 x c   L.    such that   xy e   L2}. 

Corollary 3.2.4 

The family of ECF languages is not closed under left quotient by 

regular sets. 

Proof 

Let  L = {anba(n+1)m | n 5* 1,  m > 2 },   and let R = a*b.     Then 

r   rs I i R\L = {a      I r, s ^ 2j   is not regular and thus by Corollary 3.1.5 is 

not ECF. D 

Given that the family of ECF languages is not closed under homo- 

morphism,  even length-preserving,   is is natural to ask if there is any 

class of mappings which insures closure.   We observe that non-closure 

under the homomorphism h(a) = h(b) = a  is due to the identification of 

two formerly distinct symbols (i.e.,  due to loss of information).   Hence, 

we conjecture that if a mapping preserves information,   it will preserve 

the ECF property.   Under suitable definition of "information preser- 

vation", this is indeed the case. 

Definition 3.2.2.     A homomorphism h: I -* A  is said to be invertible if 

3 a generalized sequential machine    (GSM),  g,   such that V   w e I  , 

g(h(w)) = w. 

A GSM  is a finite state transducer in which all states are accepting 
states. 
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Lemma 3. 2.5 

If h  is an invertible homomorphism,  then it is non-erasing. 

Proof 

Suppose the contrary:    i.e.,  h(a) = e  for some  a e Z,   a ^ e.    Then 

V x e  Z   ,   h(x) «= h(xa).   In particular,  for  x = e,   we have  h(e) = h(ea). 

Letting g be an inverting GSM for  h,   e = g(h(e)) = g(h(ea)) = ea = a. 

So   e = a,  contrary to assumption. □ 

Theorem 3.2.6 

Let G - (V, Z, P    X, T)  be an ECF grammar and let  h: Z - Z " be 

an invertible homomorphism.   Then h(L(G)) is an ECF language. 

Proof 

A grammar G = (V, Z, X, P  ,T)   which generates  h(L(G))   is 

obtained as follows.    Let V = V U Z.   Extend h  so that  h: V -* V     as 

follows:    if b c  Z then  h(b)   is already defined;  if s $ Z then h(s) = s. 

P    is obtained from P    by applying h to each production.   For example, 

if Z = {a,b},  VN = {A,B},  and  PQ = {A — a, (a) — abB },   then 

Po = {A -* h(a),  <h(a)> - h(a)h(b)B}. 

Let g be a GSM which inverts h. T is defined to be h ° T ° g, 

under the operation of functional composition. (T accepts if and only 

if the image of T  which it contains  accepts.) 

For each instance of a terminal symbol,  b,   in a derivation of G, 

a corresponding instance of h(b) will appear in a derivation of G. 

T  inverts h(b) to recover  b,  imitates the action of T  on  b,   and applies 

h to the output generated.   Hence,  h(w) €   L(G)  if and only if w c L(G). D 
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3.3   RELATION TO THE   FAMILY 
OF  CONTEXT-SENSITIVE  LANGUAGES 

The membership problem is said to be solvable for a family of 

languages if there exists a procedure which,  given any language  L of 

the family and any string  w,   decides whether or not  w e L.     In 

Sections 4.3 and 4.5,  we will present and prove the validity of a recog- 

nition algorithm for the ECF languages,  thus showing that their 

membership problem is solvable. 
? 

Having shown that w e L(G)  can be decided by a Turing machine, 

we next ask whether this can still be done by a Turing machine in space 

n;  i.e.,  on a linear bounded automata (lba).   The same question,   stated 

in terms of languages,   is whether ECF languages are context-sensitive. 

For the general case,  the question is open.   As will be shown,  we can 
2 

demonstrate a procedure which works in space n   but not in n.   How- 

ever,  for a large class of ECF grammars,  we can exhibit containment 

in the context-sensitive (CS).   We will define this class,  prove the 
2 

assertion,   and then discuss space  n  . 

Definition 3.3.1.     A production A —» a is said to be L-restricted if 

I A I ^ I a I .     A derivation is L-restricted if all productions used in 

the derivation are L-restricted.   An ECF  grammar G is L-restricted 

if  V we L(G)   3  an L-restricted terminal derivation of w. 

Remark.     A production A — a is clearly L-restricted if A e V"N and 

a ± e.   The significance of the L-restriction is that it guarantees that 

a derivation does not involve a "swell" of substrings belonging to VM- 

That is,  under the L-restriction,  if (w, ß) =^=» (ww', e),  then 1/3 1^1 wfl . 

45 



Theorem 3.3.1 

Let G - (V,2,X, P     T)   be an L-restricted ECF grammar,   then 

L(G) is a context-sensitive language. 

Proof 

We construct a nondeterministic lba,  M,  which performs a legal 

derivation of G  and accepts if and only if the string so generated is 

identical to its input.   From this,  it follows directly that L(G) is 

context-sensitive. 

M's tape is divided into three tracks:   Tl,  T2 and T3.     Tl con- 

tains the input while T2 and T3 are working tracks.    Letting 'MS"  be a 

new symbol reserved to designate a blank tape square,  the initial con- 

figuration is: 

r   w        -N 

Vw| \   $ 

M begins its operation by imitating the action of T  acting on  w, 

writing the output corresponding to each symbol of Tl directly beneath 

it on T3.   This requires (1) a symbol reserved to indicate e-output, 

(2) possible compression by a factor of k,   where  k is the length of 

the longest string emitted by T for any single input symbol.   Since  k 

is fixed for the grammar,  this compression presents no problem and 

is subsequently ignored.   As  M  imitates  T,   it keeps track of T's state. 

When all of w has been processed,   M  rejects if the simulated state of 

T  is not an accepting state.   After this first step has been completed, 

M  initializes  T2  to the start symbol X,   so that the tape contains 
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$\  X i5lwl"1 

[ T(w) 

M next goes into a cycle in each step of which it imitates a 

rewriting of the leftmost member of I on T2.   At the beginning of some 

step,  let the contents of T2 be 

xYß^ where     x e z''\    Y e I,    ß c V* . 

We refer to Y  and to the point below it on T3 as the derivation point. 

The portion of T3 lying to the left of the derivation point is the output 

of T  given x  as input.   Hence,  this substring determines the changes 

'to the local production set at the time that Y is rewritten by the 

grammar.   It is therefore possible to "choose" a member of the local 

production set at random.     M  either (1) chooses a member,  (/>,  of P 

and then scans T3 from its left boundary to the derivation point,  to 

verify that (j> is not deleted,  or (2) scans T3 leftward from the deri- 

vation point,  choosing an added production,  (j>,  at random,   and then 

scans rightward from the point of choice to the derivation point,  to 

verify that </> is not subsequently deleted.   In either case,   if <f> is deleted, 

then M rejects. 

Let the production so chosen be A — a,  where A e I and a e V . 

The string ß is moved (\a\ - |A|) tape squares to the right along T2, 

and a is copied into the region between x and j3.     T2 then contains 

0 t i'c 4_ i'z 
xaß^D where   xel",    <* € V  ,    ßeV. 

If an attempt is made to move ß off the right end of T2,  then M rejects. 

The above cycle is repeated until T2 contains no members of I. 
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M then compares the contents of Tl and T2 and accepts if and only if 

they are identical.   Since each step of the cycle corresponds to a legal 

generation step,  and since M has previously verified that T would have 

accepted w, it follows that if w is accepted by M, then w c L(G).  Con- 

versely, if we L(G),  it has at least one L-restricted derivation which 

M can imitate.  Hence, the language accepted by M is precisely L(G). D 

Corollary 3.3.2 

The family of L-restricted ECF languages is a proper subset of 

the family of CS languages. 

Proof 

The above theorem shows that the L-restricted ECF languages are 

a subset of the CS.   To show that they form a proper subset, we observe 

that the language used as a counter-example in proving Theorem 3.2.2 

was L-restricted.   Hence, the family of L-restricted ECF languages is 

not closed under non-erasing homomorphism.  Since the family of CS lang- 

uages is closed under non-erasing homomorphism, the result follows. □ 

Remark.     Note that the above theorem and corollary are valid if the 

L-restriction is redefined to assert the weaker condition |A| ^ K\a\ for 

any fixed constant  K.   Also,  they continue to hold if productions A — e, 

where  A e \r       are admitted.   The proof of the latter assertion 

involves the following construction:   M  "guesses" which symbols on T2 

will generate the empty string,   erases these symbols,   records the 

guesses,   and later verifies their legality. 

If the L-restriction is completely removed,  then the construction 

used in Theorem 3.3.1 will not yield a recognizer that operates in 

space  n.   Indeed,  it may be that (w, ß) =^ (wwf, e)   with Ij3l > I w' I ,   so 
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that   M   will attempt to move   ß   off the right end of T2 and will fail. 

However, with some modifications to handle erasing rules, the construe- 
2 

tion will yield a recognizer which operates in space n . 

Theorem 3. 3. 3 

Let G be an ECF  grammar.    There exists a constant K such that 

L(G)   can be recognized by a nondeterministic Turing machine M having 
2 

tape bound Kn . 

Proof 

We use the construction employed in proving Theorem 3. 3. 1 with 

certain modifications.    Consider the cycle in which M  imitates a re- 

writing of the leftmost member of I on  T2.    At the beginning of some 

step, let the contents of T2 be 

x Y ß6*       where   x € 2*,     Y e I,     ß € V*. 

Let the production selected to be used in rewriting be Y — a.    If a = e 

then M  rejects,  so that erasing rules are never applied directly. 

Instead, M  operates as follows.    The rewriting step results in 

6\ 5j< + # 
xßß* where  x e 2  ,     G e X '     ßeV. 

The string a is composed of one or more elements of V ,  say   a = A- •. 

A    where A. e V.    Some of the A's may be members of I;   M nondeter- 

ministically guesses which of these would rewrite to the empty string 

in a derivation of w by G.    M marks these A's specially.    Hence,  at 

a given step in the cycle of imitating   G,   T2   has the form 
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xBllB12,,,Bli1
CllC12,,-ClJ1

B21B22,,,B2i2
C21C22--,C2j, 

 BN1BN2 * * * BNiM
CNlCN2 ' ' ' CNjT 

l 

where 

AN   "*   "" i>JN 

ik,jk^i Vk 

C      e I and is marked to indicate a guess that C 
^ will generate the empty string ^ 

B      e V rs      - 

By the construction used,  each B      will generate at least one terminal. rs 

Hence,  if the derivation is to produce w,  we must have N <   |w|.    If N 

ever exceeds   |w|   then M  rejects. 

We can now state the rewriting step more precisely.    At the begin- 

ning of some step, let the contents of T2 be 

xZß^ where   x e £*,     Z € I,     ß e V*. 

If Z is a B      (i. e.,  predicted not to rewrite to the empty string)   then r s 

rewriting proceeds as discussed above:    some non-erasing rule Z — a 

is applied.    If,  however,  Z is a C       (i. e.,  predicted to rewrite to the 

empty string), then M  checks the prediction.    This entails determining 

whether there is a derivation sequence Z => e using the local production 

set at this point.    Since no rules can be added to the local production 

set while rewriting Z to e,  this verification requires no additional 

storage.    If the verification fails then   M   rejects. 

The cycle is repeated until T2 contains no members of I. M then 

compares Tl with T2 and accepts if and only if they are identical. As 

in Theorem 3. 2. 1,  the language accepted by M  is precisely L(G). 
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To obtain the space bound,  consider the complete substring 

C, .C, 2...C, .  ,  for some k.    Since each C, ,   is predicted to produce 
K 

the empty string and hence leave the local production set unchanged, 

we lose no information if duplicate elements are removed.   Since 

checking for duplicate elements requires no additional space,   M  can 

remove   them during the rewriting step without affecting the space 

bound.    Hence, we assume that C, . . ..C, .    contains no duplicates, 
^k 

for all k. 

Further,  every C,,   in such a  substring must appear in a produc- 

tion.    Either this production is in P  ,  or it is in T(w).    Hence, 

KvCkk^   |T(w)|+K2 

where K2 is the number of distinct elements of I found in the initial 

production set P  .    Letting K.   be the maximum number of symbols 

emitted by the FST for any single input,  we have 

Ckl"-Ckj   I^KjwI + K^ 

Hence, the length of all C     's at any point in the cycle is bounded by 

(Kx |w |+K2) • N ^ (Kx |w |+K2) |w |. 

Since all B 's generate at least one symbol, the number of B 's must 

be ^ |w |. Since each B must also appear in a production, the length 

of all B    's at any point is also bounded by 

(KJWI+K^IWI. 

Hence, the number of symbols on  T2 at any point is bounded by 
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|w| + 2|w|(K1 |w|+K2). 

Therefore, taking K > 2(K1 +K?) + 1,   M can recognize any string w in 

space K |w I   . 

Remark. The result we shall present in Sections 4. 3 and 4. 5 can be 

used to obtain an analogous result for recognition by a deterministic 

Turing machine.    We will exhibit a recognition algorithm for a random 
o 

access machine which runs in time and space n  .   It follows,  therefore, 

that the same algorithm will have polynomial bounds when modified to 

run on a Turing machine. 

3.4   UNDECIDABILITY RESULTS 

Although it is possible to decide whether a given string is gener- 

ated by a given ECF grammar, we show in this section that it is not 

possible to decide whether an ECF grammar generates any terminal 

strings whatever.    That is,  the emptiness problem for ECF grammars 

is undecidable.    This property appears fundamental to ECF grammars. 

It continues to hold even when a number of strong restrictions are 

placed on the grammars.    In Section 5.1,  we will discuss the signifi- 

cance of this result in applying ECF grammars to the description of 

programming languages. 

Theorem 3.4.1 
? 

The question  L(G) = (p  is undecidable for ECF grammars,  even 

under the following restrictions: 

(a) the L-restriction holds, 

(b) no productions are ever deleted, 
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(c)   a production generated by the FST may have only terminal 

symbols on its right-hand side. 

Proof 

For any Turing machine  M and any initial configuration C,  there 

exists (effectively) an ECF grammar G = #(M, C)  such that L(G) * (p if 

and only if M halts when started in configuration C.   From the undecida- 

bility of the halting problem for Turing machines follows the undecida- 

bility of the emptiness problem for ECF grammars.   The construction 

is as follows. 

Let M = (K, I, r, 6, q  , F) be a Turing machine.   Assume 

K Pi r = (ft,   so that an instantaneous description may be represented 

unambiguously by a string § cy q /3 | where  a,ß c T* ,   q e K,   and  "$"  and 

"|" are special symbols which delimit the instantaneous description. 

Let an initial configuration of M be  C    = a q ß   .   The corres- 

ponding ECF grammar (for M applied to C ) is given by 

G = (V,£r,P   ,X, T)   where  P    is given by: 

X — CN 

C-*"o%M 
N — CN. 

The finite state transducer,  T,   is defined so as to map each input ID 

§c*qß$   into an output production  [[ C — § a* qr ß' $ J  such that 

aqß I— af q' ß' .   That this mapping can be carried out using finite 

memory is clear:   In obtaining a successor ID,  the state symbol is 

moved at most one square in some direction,   and at most one other 

symbol is changed. 

Hence,   a derivation of G has the form 
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X «->   CN -=>  § a   q   ß   $ N 

where,   for all j  (0 < j ^ n), 

C = a. q.ß.  either is the immediate successor (under a derivation 
J        J   J    .1 

of  M) of C.   ,,  or is equal to C,   for some  k   (0 ^ k < j). 

The FST has one additional function.   If it ever emits a production 

[[ C — § aqßt ]]  where  q  is a final state of M,   then it also emits a 

production  [[ N — h ]] .   Hence,  if the Turing machine  M  ever reaches a 

final state,  there will be at least one derivation of G  having the form 

X ~U $ a   q   ß   t ... $ a   q   ß   t h o no Mo T y   n m Hn " 

so that  L(G) # $.   Since this is the only way N  can ever be rewritten 

directly to a terminal string,  the converse holds. D 

Corollary 3. 4. 2 

The following are undecidable for ECF grammars: 

(a) whether L(G) is context-free,  finite,  or regular, 

(b) whether G  is  L-restricted, 

(c) whether derivations of G  involve no deletion of productions, 

(d) given  k,  whether G  is  RLB-k. 

Proof 

Clearly,  all the above properties hold for any ECF grammar 

whose language is empty.   Also,  for each of the above, there exists 

an ECF grammar G  such that the property in question does not hold. 

Example 2. 3. 1 gives a grammar G  such that L(G)  is not context-free, 
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finite,  or regular;   also, G is not RLB-k,  for any k. Example 2. 3. 3 

gives a grammar which is not   L-restricted.    It is easy to construct 

a grammar such that its derivations may involve deletion of productions. 

Given the desired grammar G = (V, 2,P , X, T), the proof is 

identical for all four of the assertions.    Let G' = (V\2',P' ,X',T') be 

the grammar used in the proof of Theorem 3.4. 1.   We construct a new 

grammar G" = (V",2", P",XM, T") from G  and G"   such that the property 

in question holds iff L(G") = 0. 

Assume  V fl  V1 = 4>.    Let V" = V U V  U {m} and let 2" = 

2  U   2'   U {m} where m is a new symbol.    Let P" = P     UP1.     Let L   J J o        o o 

X" = X'.    T"  is constructed from  T and  T' as follows.    T" contains an 

image of T and a modified image of T'.   The start state of T"   is that 

of T',  so that T"  initially imitates  T'.    The modification is that where 

T1  would emit the terminal production [ N — hfl,  T"   emits the produc- 

tion H N -* mXfl,  where m is a special marker and X  is the start symbol 

of G.    T"  then goes into a special state in which the only acceptable input 

is  m;   if m  is found as the next symbol,  then  T" enters the start state 

of  T and subsequently imitates  T. 

By construction, 

L(G») ={w'mw|w'  eL(G'),   w e L(G)}. 

Hence,  if L(G") 4- (p   then the property in question does not hold.    If 

L(G") = (j)   then the property clearly holds.    Also,  L(G") = 0   iff L(G') = 

0.    Since the latter question is undecidable,  the property is undecid- 

able. D 
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3.5   RESTRICTED CASES 

We turn to consideration of the classes of languages produced by 

imposing various restrictions on ECF grammars.    Each restriction 

limits in some fashion the form of a new production.    By studying the 

classes of languages thereby produced, we obtain a more precise under- 

standing of the generative power of ECF grammars. 

In Section 3. 1,  the notion of a rule length bounded ECF grammar 

was defined,  and it was shown that such a grammar generates only a 

context-free language.    Another restriction which leads to producing 

only the context-free languages is obtained by considering ECF gram- 

mars in which all productions emitted by the FST are deletion rules, 

i. e.,  of the form IA /* aj.    Since rules which delete productions not 

in P    may be ignored,  such a grammar can be imitated by a push-down 

automaton.    Hence,  its language is context-free. 

A more interesting type of restriction is that yielding families of 

languages  which both: 

(a) properly contain the context-free, 

(b) are properly contained in the ECF. 

We consider two restrictions which have this property: 

(1) grammars in which new productions have only terminal symbols 

on their right-hand side, 

(2) grammars for which there is a bound on the number of new 

productions. 

Each of these demonstrates a facility of ECF grammars which can be 

omitted only with the loss of generative power. 
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Definition 3.5.1.     A derivation is I-restricted if V productions <j> used 

in the derivation,  either <j> e P    or 0 = A — a where a e I  .     An ECF 

grammar is I-restricted if V w € L(G), 3  some I-restricted terminal 

derivation of w. 

Definition 3.5.2.     Let G = (VJZ,PQ,X, T)  be an ECF  grammar and let 

w e L(G).   The string w is rule number bounded with constant k 

(RNB-k) if T(w) has no more than k substrings which can be interpre- 

ted as productions being added (i.e.,  of the form "|[A — <?]]"). 

A grammar G  is RNB-k if Vwe L(G),   w is RNB-k. 

Since the grammar of Example 2.3.1 is I-restricted and RNB-1, 

it follows that the family of I-restricted languages and the family of 

RNB-k languages (for any k ^ 1) each properly contain the context-free. 

Theorem 3.5.1 

The family of I-restricted ECF languages is a proper subset of 

the. family of ECF languages. 

Proof 

Consider  L = L   U  L2,  where 

Ll={anbc<n+1)m|n* i,  m?2}, 

L2 = {anbd(n+1)m|n^l,  m^2}. 

An ECF grammar which generates  L  is as follows.   The initial pro- 

duction set is: 

X  — A   b   R   N 

A  -*  a   A a 

N  - R   N |     R 

E  -  c d . 
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The finite state transducer is given by: 

c- 

C / 0 

a/|lR-E b/E] 

where  F = {q^.q^ j.    Note that this grammar is not I-restricted,   nor 

can it be modified to be so. 

Let G - (V,Z,P   ,X,T)  be any ECF grammar,   not necessarily the 

above,   whose language is   L.   We shall demonstrate that G  is not 

I-restricted. 

Clearly,  L  is not context-free.    Hence, G  is not rule length 

bounded.    Further,  for any k  3   at least two strings  w1 e L    and 

w? € L„ which are not RLB-k.    Indeed,  suppose the contrary.    Then 

3   k  such that either L..  or L~ is RLB-k,  say   L  .    Hence,  L1   is 

context-free.    But since  L1   can be mapped by a homomorphism into 

the language of Example 2. 3. 1,  this is impossible.    Let w.  = a     b c 
Ü 2      m2 

and let w2 = a     b d 

Let the number of states in  T be  s  and let the maximum length 

of output emitted by T for any single input symbol be N.    Let the length 

of the longest production in P   be p    .    Let k > maximum (p    ,4N*(s+l)), 
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Let EL  = 7T10, ... , 77-       and IL = 772Q, ..., 7T2       be derivations of w. 

and w2,  respectively,  using productions  4>1   and  4>2  suchthat   |ct>..|>k 

and   |<t>2| > k. 

Since   |4>. | > p    ,  cj>.  must have been generated by T,  for i = 1,2. 

Since   |4>. | > 4N •  (s+1),  <J>.  must have been output while the b was 

read in.    Indeed,  otherwise  4>.  would be the output corresponding to a 

string of a's, c's,  or d's.    However,  this is impossible,  for given only 

a single   input,   T  cannot generate  N •   (s+1) symbols without being in a 

loop.    If in a loop, then T cannot output a capping  "l"  to terminate 

the production.    (This is essentially the same argument as used in the 

proof of Theorem 3. 1.4.)   Hence,  if cj>   e P        for any j   then 771 .   = 

s      t ^      * (a   be ,v)  for some integers  s,t and some v e V .    Similarly,    if 

4>9  € P_       then 7T9.I = (a   bd ,6)  for some u,   v,   and 6. 

For convenience of notation, let f, = c and f9 = d,  so that f.  can 
N.      Nj        ' z l 

denote either c  or d.    Let a     b f.     be the substring of w.  which is 

mapped by T into H <(>.].    Let I $ j I = +A * ^  ' +{ where ^.,  ip. ,   and 

N. N! 
4J!  are the images under T of a    , b,  and f.   ,  respectively.     Since 

14). B  is capped by a final  "I", N!<s+1;  hence   |a>! | < N(s+1).    Since 

|a>. | +  |^| +  |+! | =   |<l>. | > 4N(s+l),  we have   |•+•. | > 2N(s+l).    Let +• 

be the first  2N(s+l)  symbols of +..    The only input to  T up to the end 

of \\>?   is a's;   since  T is deterministic,  a>° = u>9.    Further,  since the 

productions  cj>,   and cj> 9 are used in the derivation, they contain no 

member of V whose length exceeds N(s+1).    Hence, 

4JJ =^2 = lA-aT|        where   A € I,     a e V ,    n € v". 

Therefore 
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4>,  ■ A- aß 

where A e I,     a e V ,     (3. e V . 

Suppose G  were I-restricted.    Then  4>. = A — G ß.   where  c e E   . 

Since IIl   uses  4>1 and II2  uses  4>2,  it follows that w,   and w2 must 

have the forms 

ki w,   = a     b w' a ß   w" 

k2 
w2 = a     bw^ GP2 

w2 

where  a ± e.    But by hypothesis, 

\mi w    = a     be 

w2 = a     b d 

ml m2 
Hence,  c        = w'aß   w"  and d    J = wUßnW"   which is impossible, 

since  a must consist of c's in one case and d's  in the other.    Contra- 

diction. 

We conclude that if L = L(G),  then G  is not I-restricted. D 

Theorem 3.5.2 

For each k,  the family of RNB-k ECF languages is a proper sub- 

set of the family of ECF languages. 

Proof 

Consider   the   language 

L = {abac a ba c a ba c .. . a ba  c | n ^ l}.     By the  theorem   of 

Bar-Hillel,   Perles,  and Shamir [Hop69] this language is not context- 
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free.     It can,   however,   be generated by an  ECF grammar.     Let 

G = (V,2,P  ,X,T),   where I = {a,b,c},  VN = \X, Y, Y', B, B'},   and   1MB 

given by: 

X  -  YrY' 

Y'   - a B 

B  -  b | c YY | c 

Bf  - b| cY'Y' | c . 

The finite state transducer is 

T = (K.I. A, 6,\.qrF), 

where 

K = K^2 V« 
A     VNU it, 1, —.   *}. 

and 

The transition and output functions are as follows: 

6(qr a) = q2 Mqr a) = ft Y — aa 

6(q2, a) = q2 X(q2, a) = a 

6(q2>b) = q3 Mq2,b) = B' ] 

6(q3,a) = q4 Mq3, a) = [Y'Aa 

6(q4,a) = q4 Mq4,a) = a 

6(q4,c) =q5 Mq4.c) = B J 

6(q5,a) = q6 X(qg, a) = [ Y' - aa 

6(q6,a) = q6 \(qß,a) = a 
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ö(q6,b) = q? Mq6,b) = B ] 

ö(q7,a) = qß Mq?a) = [ Y A a 

6(q8, a) = q8 \(q8, a) = a 

ö(q8,c) - q1 Mq8,c) = B']. 

The FST alternates between two activities:   (1) mapping  a    into a pro- 

duction with  a      B  as its right-hand side,  (2) mapping  a1 into the 

deletion of a production with  a B  as its right-hand side.   Hence,   each 

substring a ba c,  when mapped by the FST,  first creates a production 

which will allow generation of its successor and then deletes the pro- 

duction which is used in generating itself. 

Let G = (V, I, P   ,X,T)  be an arbitrary ECF grammar such that 

L(G) = L.    We claim that for any given integer  k,  G  is not RNB-k. 

Suppose the contrary,   i.e.,   3   k  such that  G   is RNB-k.    Let 

w    * abac a ba c . . . a ba c.   Consider  T(w ).   Since G  is RNB-k,  then n n' 

for any n,  T(w ) contains at most  k  substrings which can be interpreted 

as added productions.    That is,  the greatest number of such substrings 

which can appear in any  T(w  ) is some  s < k.    Let this be attained for 

the string w    .    For all n > m,  the deterministic action of  T guaran- 

tees that  T(w  ) contains these productions;   hence,  it contains no other 

added   productions.    Therefore, {w   | n ^ l} is rule length bounded. 

Since  L = {w   | n 3* l},  L  is context-free.    As this is impossible,  we 

conclude that G  is not RNB-k for any k. D 

Collecting the above two theorems and the remarks which preceded 

them,  we have the following: 
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Theorem 3.5.3 

The families of I-restricted and RNB-k ECF languages  each 

(a) properly contain the family of context-free languages, 

(b) are properly contained in the family of ECF languages. 

Remark.    We note that these two restricted classes of ECF grammars 

share another trait:    an undecidable emptiness problem.    The assertion 

has been proved for the I-restricted case in Theorem 3. 4. 1;  the proof 

for the RNB-k case is given by the following theorem. 

Theorem 3.5.4 

The emptiness problem is undecidable for the class of RNB-k 

grammars,  for any k ^ 2. 

Proof 

Let {(al,pl), (c2,ß2), ..., (Gn*ßn)} where  G.,(3. € 2    be a Post 

correspondence problem.    We construct an RNB-2 grammar whose 

language is non-empty if and only if the correspondence problem has 

a solution. 

The initial production set P    is given by the schema 

X -AdBdN 

A - 1 QlAa.      I     lO^c i = 1,... ,n 
l      ' l 

B - 1 01Bßi      |     1 01cßi i = 1,... ,n 

where 0, l,c,d are new terminal symbols not members of  2.    The FST 

is  specified by its state transition diagram 
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y/y 

y/y 

t/<^ 

O 

O 

6 

ö 

I/ILN-O 

d/> 

i/[(l 

d/> -tl 

Let L.   be the context-free language generated by taking the start 

symbol to be A  and using only productions in  P    with A  as their left- 

hand side;  let LR be analogously defined.    A derivation of the ECF 

grammar must have the form 

(e,X) => (e.AdBdN) 

* 
(wAd,BdN) where   w.   e L. 

at which point the local production set is 
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P0U{N-<wA>}. 

The derivation must continue 

=^> (wAdwßd,N) where   wA e LA,     wß e Lß 

at which point the local production set is 

Po U {N-<wA),  <wB>-t}. 

Hence,  the derivation must continue 

=> (wAdwßd,  (wA>). 

This terminates  iff wA = wR iff L.   D LR 4- 0   iff the correspondence 

problem has a solution. D 

3.6   RELATION  TO OTHER GENERALIZATIONS OF 
CONTEXT-FREE  GRAMMARS 

To date, at least six generalizations of context-free grammars 

have been proposed:    scattered context [Greib68], table grammars 

[Whit68a], [Whit68b], [Whit68c], [Whit69],  indexed grammars [Aho68], 

macro grammars [Fisch68],  programmed grammars [Ros69],   and 

grammars with control sets [Gins68b].    To complicate matters,  some 

of these have two or more subfamilies.    With the notable exception of 

[Fisch68] (which establishes definite relations to [Aho68], little work 

has been done in determining the hierarchy of these various models. 

We   shall not attempt to undertake such a study in this paper.    Instead, 

we shall relate the family of ECF grammars to what we feel is the most 

significant family above:    the indexed languages. 

These are of special interest,  for they are generated by a number 
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of apparently unrelated formal systems:    indexed grammars, OI macro 

grammars,  nested stack automata [Aho69a],  and pushdown automata in 

which the stack elements are themselves stacks [Aho69b].    This sug- 

gests that the family embodies some central,  machine-independent notion 

and hence will be of particular importance in the study of formal lan- 

guages. 

Having thus justified a comparison with the indexed languages,  it 

is unfortunate — but nonetheless of interest — to assert: 

Theorem 3.6.1 

The families of ECF languages and indexed languages are incom- 

mensurable;   i. e. , neither family is a subset of the other. 

Proof 

Fischer [Fisch68] shows that  L = {a   | n is non-prime and ^ 2} 

is a basic macro language (see [Fisch68] for definitions).    Hence,  L  is 

an OI macro language and equivalently is an indexed language.  In view 

of Corollary 3. 1. 5,  L  is not ECF. 

To show the converse,  we construct an ECF grammar which 

"imitates"  a universal Turing machine and show that the language it 

generates cannot be an indexed language. 

Let M = (K, 2, r,6,q  , F) be a universal Turing machine.     As 

noted in the proof of Theorem 3. 4. 1,  an instantaneous description of 

M  can be unambiguously represented by a string   § aqp jj  where aß c T   , 

q € K,  and   §  and   ij  are special delimiters not in T  or K. 

Consider the ECF grammar used in the proof of Theorem 3. 4. 1 

modified so that its initial production set is 
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X - §SqQS| N 

S-*e aS V a e 2 

N - CN 

A derivation in the new grammar begins 

X => §SqQS ) N 

=>§aq   pjN where   a,ßcr^ 

=*> §czqoß|CN 

Hence, a derivation generates an arbitrary initial configuration and then 

imitates the sequence of instantaneous configurations produced by M 

when started on this initial configuration.    The language generated by 

the ECF grammar is 

L = {C   C, ... C   h       C     is an initial configuration of M 

and V j = 1,..., n either C .   . I  C .   or J 3-1    M      J 

C = C,    for some  k (0 < k < j)/. 
J        K 

Hence,  a string in L is an encodement of a halting computation of M. 

Consider the   gsm   g   which maps each symbol into that symbol, 

up to and including the first " J "  it encounters and thereafter maps 

each symbol into the empty string.    Then 

g(L) = {C M  halts when applied to initial 

configuration C J. 

Since the halting problem is undecidable,  g(L) is not recursive. 

Suppose L were an indexed language.    Since the family of indexed 
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languages is closed under gsm mappings [Ahc-68],  g(L)  would be an 

indexed language.    However,  since the indexed languages are recursive, 

this is impossible.    Contradiction. D 

Remark.    For two other families — the scattered context languages 

and the cfpg programmed grammars — it is possible  to  exhibit lan- 

guages which are not ECF.    The converse questions,    however,   are 

open. 

68 



Section 4.    PARSING 

4.1   MOTIVATION 

We now turn to the problem of parsing strings generated by an 

ECF grammar.   As claimed in Section 3.3,  we will demonstrate that 

legal strings can,  in fact,  be recognized,  i.e.,  that the ECF languages 

are recursive.   However,  the theoretical question is of only secondary 

interest.   If ECF grammars are to be used to specify programming 

languages,   we require not merely a recognizer but a parser.   Further, 

the parse algorithm must be sufficiently economical in time and space 

to be of practical utility.   The algorithm we will exhibit has this 

property. 

4.2   AN ALTERNATE  FORMALISM  FOR  DERIVATIONS 

In Section 2.2,  after defining an ECF derivation,  we noted that an 

alternate definition exists.   As this alternate definition is far more 

efficient for computational purposes,   it is a preferable one to use in a 

discussion of efficient parsing. 

Definition 4.2.1.     Let G = (V, Z, P     X, T)  be an ECF grammar. 

A configuration of G  is defined to be an element of (2' , V' , K~, AT, S) 

where ICp is the state set of T,   where AT is the output vocabulary of T, 

and where  S is the set of possible production sets over V. 

The transition between a configuration \fj and a possible successor 

(//'  is denoted by \jj \- ip '  and is defined as follows. 
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(1) If (A — a) c P,   then (w, A/3, q, x, P) h (w, aß, q, x, P), 

(2) If  a c I,   then (w,aß, q, x, P)  h (wa, j3, q', x', P')   where  qf = ö(q , a), 

Pf = IP(P, x • \(q, a)),   and where  x'   is obtained as follows.    Let 

y = x-\(q, a).   If y  does not contain the symbol "]",  then let 

x' = y.   Otherwise,   write y = y. •   [] • y~ where y? docs not 

contain " ]]";   let  xf = y2 . 

Let I—   and   I—   denote the m-fold closure and transitive closure of \-, 

defined in the usual fashion. 

The notion of configuration is related to that of instantaneous 

description (cf. Section 2.2) as follows.   If  7r = (w, 7)   is an ID,   an 

equivalent configuration is given by  ip = (w, 7, 6(q  ,w),y, P ) where y is 

that substring of T(w) which is right of the rightmost instance of  " ]]". 

The configuration \\J differs from the ID IT in that it explicitly carries 

(1) the local production set,   and (2) part of the information needed to 

compute the local production set of a successor configuration.    Gener- 

ation expressed as a sequence of configurations simply avoids the total 

recomputation of P    at every step. 

Theorem 4.2.1 

For any ECF grammar,  (e,X) —■► (w, y) = it if and only if   3 y 

such that (e, X, qQ, e, PQ)  |-^- (W, 7, 6(qQ, w), y, P^) . 

Proof 

Obvious,  by induction on m. □ 

In view of the equivalence of ID's and configurations,   we will be 

somewhat loose in our notation.   We will use the latter in obtaining 

time bounds and revert to the former when concise notation is desired. 
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4.3 AN ADAPTATION OF EARLEY'S ALGORITHM 

Of those parse algorithms which handle the entire family of 

context-free languages,  Earley's [Earl68] seems to be the best.     It 
3 

matches the best known time result, n  ,  for the general case.    For a 

number of subfamilies on which a special algorithm will run faster (e.g., 
2 

Kasami's time-n    algorithm for unambiguous grammars [Kas67] and 

Knuth's time-n algorithm for LR(k) grammars [Knu6 5]), Earley's algo- 

rithm runs at the rate of the special case algorithm. Further, it attains 

the faster rate automatically, without being instructed that the language 

in question falls into a special class. 

For our purposes, Earley's algorithm has another useful trait: 

it places no restrictions whatever on the grammar.    Unlike most 

algorithms,  it correctly handles circular grammars,  disconnected 

grammars,  and grammars which generate strings having an infinite 

number of parses.    The results of Section 3. 1 demonstrate that most 

normal forms for context-free grammars (e.g.,  intermediate constitu- 

ent form or Greibach normal form) are not normal forms for ECF 

grammars since these normal forms put bounds on the length of produc- 

tions.  Hence, Earley's algorithm,  which does not depend on a normal 

form and which works correctly on any set of productions it is given, 

is particularly attractive. 

We will discuss how Earley's algorithm may be adapted to the 

parsing of ECF languages, will prove that the resulting algorithm is 

valid,   and will exhibit time and space bounds.     We will assume 

This is particularly relevant in view of the undecidability results 
connected with the above special classes. 
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familiarity with Earley's algorithm as described in Sections II,  IV,  V, 

VI,  XIV,   and XV of his thesis.   Definitions and notation will be close 

to those of Earley.   We will also follow Earley in first specifying a 

recognition algorithm and then discussing how this can be modified to 

produce a parse. 

An intuitive description of our recognition algorithm can best be 

given in terms of Earley's.   The latter operates on two inputs:   a string, 

a1  ... a  ,   and a grammar,  G = (V, E,X,P).   It scans the string from left 

to right and as each symbol  a. is scanned,   it constructs a state set S. 

which represents the condition of the recognition process at that point. 

S. is a function of three variables:   (1)   a.,    (2)  the previously con- 

structed state sets, {S, | k < i},   and (3)  the set of productions,  P.    For 

context-free grammars,  P   is constant.   To allow the algorithm to 

recognize ECF strings,  we simply make  P  variable.    For each  i, 

P. = P(P   , T(a. ... a.)) is computed and P. is used in place of P. 

One point has been suppressed in the above paragraph.    Earley's 

algorithm also utilizes a k-symbol look-ahead,   where   k  is any fixed 

non-negative integer.    When processing the input symbol a.,   it con- 

siders  a.,,  ... a.   ,   to eliminate false paths as soon as possible.   While 

most of Earley's algorithm carries over to the extensible case,  the 

look-ahead feature does not.   In his algorithm,  look-ahead consists of 

verifying an expectation that after some symbol A  has been construed 

in the input string,  the next  k  symbols must be some given string a. 

In the ECF case,  the production set may change while  A  is being con- 

strued,  thereby invalidating the expectation  a.   Hence,   we shall first 

consider an algorithm which involves no look-ahead,   i.e.,   k = 0.    Later, 
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we will discuss how this algorithm can be further modified to include 

partial look-ahead. 

A second point which requires discussion is the fact that 

Earley's algorithm requires all input strings to be padded on the right 

by a distinctive symbol,   say  "H ",   where -I <t I.   This requirement 

can be satisfied in one of two ways.   The recognition algorithm can 

take its input,  a- ... a  ,   and concatenate to it the symbol "H " as the 

st (n+1)      element.   Alternatively,  the requirement can be cast as a con- 

dition imposed on the grammar:   i.e.,  that the start symbol be a 

special symbol D    which appears in a unique production 

D     — X H o 

and that "H " appears in no other production.   The two methods are 

entirely equivalent for all practical purposes.   However,  the first 

method would induce clumsy notation in later proofs,  for it requires 

special handling of the pad symbol.   Hence,   we adopt the latter con- 

vention.   That D    and H   appear in only one production of P    may be 

imposed as part of the definition of ECF grammars;  to insure that 

they appear in no new production,  we require that D    and -\   are not 

members of the output vocabulary of T.   We stress,  however, that 

this convention is made for convenience only and involves no loss of 

generality. 

We now turn to a precise description of the recognition algorithm. 

For each symbol a. scanned,  two actions are taken:   (1)  the local 

production set,  P.,  is updated,  (2) the state set,  S.,  is computed.   The 

former can be performed by a slight modification of the technique 

described in Section 4.2. 
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Let \jj = (w, ß, q, x, P)   with successor \jjf = (wZ, ßT, q', xr, P').   We 

observe that: 

(1) if Z - e,   then Pr - P, 

(2) otherwise,  Pf  depends only on Z,  q,   x,   and  P. 

Hence,   to compute the local production set,  Pf,   we need record only the 

3,4,   and 5     components of a configuration. 

For any string  a- ... a    and any  i (0 < i < n),   define a string- 

state Q. as follows: 

<»   Qo = <Ve'Po>> 

(2)   for  (1 « i « n),  let Q. = (q., x., P.),   where 

<Ji-*<<li-l'ai) 

Pi = IP(Pi.1,xi.1Mq..1,a.)) 

x.   is that substring of x.   - • \(q._-,a.) which is to the right 

of the rightmost instance of " ]". 

If Q. = (q.,x.,P.)   is a string state of  a- ... a  ,   then  P. is the local pro- 

duction set for  a1 ... a..   Note that we may view the above definition as 

a procedure for computing P..   As each symbol,   a.,   of input is read, 

Q. is computed from  a. and Q_-.. 

This specifies P.   as a set of productions.   It is useful to assume 

that these productions are indexed from 0 up to some N..   We may 

assume indexing of the initial productions with  0    = D    — X H .   As 

new productions are added in forming P.,   new index numbers are used. 

When a production,   say </>.,   is deleted,   its index number,  j,   is tagged, 

signifying that the production is inactive.   If such a deleted production 

is added again,  the tag is removed. 

74 



1L 

Another useful notation is to denote the p     production as 

0    = D    — C  ,C  « . .. C  - 
P        P Pi    P2 pp 

where   D  , C   . € V   for i = 1, . . . , p . p     pi     — »        * P 

Having specified the computation of P.,   we can describe the recog- 

nition algorithm itself. 

Definition 4.3.1.     A state is a triple of integers (p, j, f).   A state set 

is an ordered set of states.   A state is added to a state set by placing 

it last in the ordered set,  unless it is already a member. 

Algorithm 4.3.1   (ECF Recognizer) 

This is a function,  RECF,   of two arguments:     an ECF grammar 

G  and a terminal string a1 . . . a  .   It has value true or false   (accept 

or reject)   and is computed as follows: 

Let     S.  be empty   (1 < i ^ n). 

Let     P     be as specified in G. o r 

Let     S    = {(0, 0, 0)}. 

Let     Q    = (q  ,e,P  ). ^o     XMo'   '    o 

Let     i = 1   and   go to LOOP. 

LOOP: 

Process the states of S. in order,  performing one of the following 

three operations on each state  s = (p, j,f): 

1. (Predictor)     If j * p  and  C  , .+ 1) e I,  then V <j>    € P.   such that 

Dq = Cp<J+D'  add (q'°'i)  t0 V 

2. (Scanner)    If j ^ p and C  / ,-v e I,  then if C  / .,-v = a. ,  then 

add (p,j+l,f) to S.+ 1. 
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3.   (Completer)     If j = p,  then for each (q, &,g) e Sf (after all states 

have been added to  Sf) such that  D    = C  /*, i\ ,   add (q,i?+l,g) 

to S.. 

If    S.   -   is empty,  then reject. 

If    i = n-1,   Sn =  {(0,2,0)},   and 3  q e F   such that Q. = (q,x., P.), 

then accept. 

Otherwise,  let  i = i+ 1,  let Q. be computed as described above,  let P. 

be its third component,   and  go to LOOP,    end 

Comparing this to Earley's recognizer,   it will be seen that this 

differs from the latter only in the following respects.     (1)  In the 

predictor,  the production set used is variable.   (2)  Earley's look- 

ahead computation via his function  H,   is absent.   (3)  The last step of 

the main loop involves computing the local production set P.. 

4.4   A   TIME  BOUND 

In assessing time and space usage of an algorithm,   two conditions 

should be considered:     (1)  expected usage in the normal case, 

(2)  bounds for the worst case.   Note that these may differ greatly.     In 

this section,  we discuss the latter.   Specifically,   we seek a time bound, 

for since each step of the algorithm uses at most a constant amount of 

space,  a space bound is obtained directly from a time bound. 

To obtain such bounds,  one must consider an implementation and 

a machine model on which the implementation is based.    We agree with 

a contention made by Earley that the most significant properties of real 

computers are most accurately represented not by a Turing machine, 
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but by a random access machine.   This model has an unbounded number 

of registers containing non-negative integers and referenced (addressed) 

by successive non-negative integers.   It is assumed that some dis- 

tinguished register holds the constant 0.   Primitive operations on these 

registers are:   (1) copying the contents of one register into another, 

(2) comparing the contents of two registers,  (3) adding or subtracting 

the constant  1  from the contents of a register (0-1=0).   A register 

may be referenced either directly or indirectly;  i.e.,   its address is the 

contents of a directly referenced register.   Referencing by successive 

integers allows immediate access to elements of structures which 

behave like arrays.   Indirect addressing allows use of list processing 

techniques. 

Note that this is a very powerful machine model.   For example, 

such a machine can compute any recursively enumerable set,  even if 

equipped with only three registers.   However,   such computations 

involve unrealistic amounts of time and Gödelizations which make the 

register contents unrealistically large.   For those algorithms with 

which we shall be concerned,  time and the magnitude of register 

contents will be more reasonable. 

We begin by considering an implementation of the procedure 

which computes,  for each stage of the scanning,  the string state Q. 

with its local production set P..    Let a- ... a. be the substring scanned 

at some point.   Let   6. = {A|(A —a) e P,   for k ^ i} U 

{BI(A^o'Bß) e PR for some a, ß e V and k^ i}. 

S. is maintained as a tree structure and is updated for each input symbol 

scanned.   For example,  the set of intermediate symbols 
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{A, ( ab) ,  (ac), ( aaa) j would be represented by the structure: 

Updating  S   involves tracing down branches and possibly adding new 

ones. 

This structure serves as a symbol table.   All instances of 

members of I  are replaced by pointers into S .   Hence,   aside from the 

computation required to maintain  S   and to perform table lookup,   the 

implementation can be carried out as if an infinite set of symbols were 

available. 

For each A e I. ,  those productions which have A  as left-hand 

side are kept in a tree structure similar to the symbol table.    For each 

production,   status (active or inactive) and length are recorded.    The 

production tree is updated as each input symbol is scanned by the follow- 

ing procedure. 
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Let the string scanned at some point be  a- ... a.   -,  with string 

state Q^i a^.i»xi-i»Pi-i)'  where P-_-. is the symbol tree.   Let 

Q- = (6(q.   .., a.), x., P.)  where x. and P. are given as follows. 

(1) If x. - • Mq. .,, a.) does not contain the symbol " ]", then no 

productions have been completed. Hence, x. = x. , • Mq. ,,a.) and 

and P. = Pi.  This takes at most some constant number of steps. 

(2) If x.   - ■ \(q.   i, a.)  does contain " ]",  then there may be one 

or more productions to process.   For each of these,  the following is 

performed. 

(a) Its intermediate symbols are encoded into pointers,  new 

symbols in the symbol tree being made when necessary. 

(b) The encoded production is looked up in the production 

tree.   If the production is to be added and is not found,  then an 

additional entry is made in the tree.   If the production is found 

in the tree,  its status is updated:   to active if the production is 

being added,  to inactive otherwise. 

This gives a representation of P.. 

To obtain a time bound for this operation,  we recall that the 

number of input symbols processed is  i.   Hence | x.- • \(q._..,a.)| < ki, 

where  k is a constant — the maximum length output emitted by the 

FST for any single input.   Therefore,  the total time required to perform 

steps (a) and (b) is bounded by k   i,  where  k    is a constant determined 

by the specific technique chosen to implement the tree structure.   It 

will be useful to suppress such constants and to give time bounds only 

as they depend on i and hence on the string length n.   We will speak of 
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bounds   k.  n    + k~ n + . . . + k-,   -    as being of "order n    ",   or 

simply  as  "n    ".     As the procedure for updating P   must be applied 

to each input symbol,  the total time required to maintain P   is bounded 
2 

by n  .   (Note that this analysis is quite sloppy;  with some care,   we can 

show that the stated procedure requires only time  n.   However,   for the 

purpose of this section,  the result claimed will suffice.) 

The other parts of the recognizer are implemented in the same 

fashion    as described by Earley.   This implementation is straightfor- 

ward,  with two exceptions. 

(1) In the construction of S.,   it is necessary to test each state 

(p. j> g) to determine if it is already a member of S..   To save a factor 

of i  in the time required to make this test,   a vector of length  i is 

used.   The f     entry of this vector points to a list of all states in S. 

rd whose 3      component is  f.   To determine whether (p,j,g) is in S.,   it is 
J.V- 

only necessary to search the g     list. 

(2) Erasing rules (i.e.,   p = 0) cause some complications to the 

completer step of the algorithm.   Consider applying the completer to 

the state  (p, 0, i) e S..   It is necessary to consider all (q, 4, g) e S.   such 

that C  //;■ i\ = D   ;   some of these may yet to be added to S..   Therefore, 

it is necessary to maintain a record for each A c S.   of whether 

(A — e) e P. .   As each input symbol is scanned,  this record is updated 

along with P.   (This increases the time required by at most a constant 

factor.)   For each (p, j,f)   added to S.,   if (C  /  ,-,\ -* e) c P.,   then 

(p, j -hi, f)   is added to  S.. 

A time bound for the recognizer is obtained as follows.   Let 

Q. = (q.,x.,P.)  be a string state for an initial substring  a.. . . . a. . 
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Define : 

d.    = max number of productions in P, , 
1        (Kk^i) k 

m. = max length of longest production in P, , 
1     (l^k^i) K 

7.   = max number of productions in P,   with a common 
(l^k^i)    left-hand side. 

Clearly,  d., m., 7.   are each of order  i (i.e.,   are bounded by  ki for 

some constant k).   In any state set S.,  there are at most d.m.(i + l) 

states.   For each of these,  one of the following occurs: 

(1) Scanner applies.   This adds one state to S.   . . 

(2) Predictor applies.   This adds at most  r. states to S. . 

(3) Completer applies.   This adds at most  d.m. i  states to S. —but 

note that the completer may be applied to at most d. • i states. 

For each state  s  added to a state set S.,  it is necessary to check 

whether  s  is already a member of S..   This takes at most d.m.   steps. 

Hence,  the total time to process S. is bounded by: 

[d.m.(i+l)(l+r.) + (d.i)(d.m.i)][d.i] « d.m.i(r.+d.i)(d.i) ^ i6 + i7 ^ i7 , 1   1    1 1 11    iJLiJ 1    11    11 

since all terms are of order i.   It will be recalled that the time 

required to update P. for each symbol read in is of order i,   so that this 

can be neglected in comparison.   Total time for the algorithm is 
o 

bounded by C n  ,  where  C  depends on the grammar but not on the 

length of input. 
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4.5   VALIDITY OF  THE ALGORITHM 

We now turn to a proof that Algorithm 4.3.1 is valid;  i.e., 

w € L(G)   if and only if RECF (G, w) accepts.    The proof for the for- 

ward assertion carries over rather directly from Earley's proof.   In 

proving the reverse claim,  it is found that Earley's proof does not 

carry over,   but that a simplified rendering of his basic idea does work. 

We begin with the reverse claim. 

Definition 4.5.1.     Let  w = a- . . . a    be a string of terminals and let 

II = 7T     ...,7T,   be a derivation of w (i.e.,   IT    = (e, D ) =*=» (w, y) - IT, 
OK O O K 

for some  7).   The i-states of II  are the triples (p, j,f)   such that 

3  7 e V    and integers  i, i~, i~ ,  (0 < jL < L < i~ ^ k)   such that: 

»ij-* (ai--arcpi-c
PpY) = 7ri2 

IT.   =^=» (a- ... a., C  /  . 1X ... C  _7) -IT.    . 
i2 ! 1     P(J+1> PP 13 

Theorem 4.5.1 

If (p, j,f) c S.,  then (p, j,f)   is an i-state of some derivation of 

v • v 
Proof    (By induction on the number of states added to any set before 

(p, j,f) is added to S.) 

Basis.     The state (0, 0, 0) is the first state added to S  .   Consider 

the trivial derivation   IT    - (e, D ) =» (e, X -\ ).    Letting IT.    = (e, D ), 

IT.    = (e,X-l),  and  jr.    =(e,XH),   it follows that (0,0,0)  is an i-state 
H 13 

of a derivation of a.. . . . a. = e,  for i = 0. 
1 1 
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Induction.     For any state added to any state set,  one of the 

following three cases applies. 

Case   1.     Suppose (q, 0, i) is added to  S. by the predictor acting on 

(P,j,f). 

Since (p,j,f) e S.,   it follows from the induction hypothesis that 

(p, j,f) is an i-state of a- ... a. .   Hence, 3 a derivation 

- (al-"af'Cpl-CpP7) 

1» (a1...ai,Cp(j+1)...Cp-7). 

Since the predictor acts on (p,j,f) to obtain (q,0,i),   we have that 

Cp(j+D = Dq andthSt (al-ai-Dq)-*(al-ai'Cql-Cqq)-   HenCe' 

(aj ... a., Cp(j+1)... CpßT) = (a, ... a^ DqCp(j+2)... Cpßy) 

^(a1...a.,Cql...Cq-Cp(j+2)...Cp-T). 

Letting yr = C  / ..** . . . C  - y,  and collecting selected lines above, 

we have 

»0i»(a1...a1.Dqirr) 

=>(ai...a.,Cql...CqqV) 

- (al-ai-Cq(J+l)-Cq^'> 

for j = 0.   Hence,  (q, 0, i) is an i-state of a derivation of a- ... a. . 

Case 2.     Suppose (q, j+l,g) is added to  S. by the completer acting on 

(p, p, f) € S.  and   (q, j, g) e Sf . 

Since (q, j, g) € Sf,  (q, j, g) is an i-state of a. . . . af.     Hence, 
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o 1 g'    q n 

-<V..arCql...Cq^) 

= >(ai...af<Cq(j+1)...Cq-T). 

Since (p,p,f) e S.,   we have 

ft 
7T   ^=»  (a- ... a-, D   7') 

o 1 1      p 

=* (a, ... af, C   - ... C   - yr) 
1        f      pi PP 

—*  (a1 ... a., 7') . 

Since the completer acts on (p, p, f) e S.   and (q,j,g) € S~ to produce 

(q, i +1, £),   it follows that  C  /.. 1X = D  .   Hence, M J      6 q(j+D      P 

»0±>  (ai...ag,Dq7) 

4#  (a1-..arCq(j+1)...Cq-7) 

=    (ar.af,DpCq(j+2)...Cq.T) 

-(a1...arCpl...Cp.Cq(j+2)...Cq,7) 

^   (al-VCq(J+2)--Cqq^- 

Therefore,  (q, j+l,g) is an i-state of a derivation of a. ... a. . 

Case 3.     Suppose (p, j+l,f) is added to S.      by the scanner acting on 

(p, j, f) e S. .   Since (p, j, f) is an i-state of a derivation of a. . . . a. . 

we have 

-> <«i-«f.cpi-
cPP7) 

-*(a1...ai.Cp(j+1)...Cp-Y). 
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Since the scanner adds (p, j+l,f) to S.,   it follows that C /..«% = a.   - . 

Hence, 

(a, ... a., C #.. «\... C  - 7) = (a- ... a., a., , C  /  ,ox ... C  - 7) 1 1      p(j+D pp ' 1 i'   l+l    p(j+2) pp " 

=*>  (a. ... a. a., , . C  /  ,ox...C   -7). 
1 11+I      p(j+2) pp " 

Therefore,  (p,j+l,f)is an (i+l)-state of a derivation of a. . . . a... . n 

Theorem 4.5.2 

If RECF(G, a   ... an) accepts,   then  ax . . . an e L(G). 

Proof 

Since  a. ... a    is accepted,   S    = {(0. 2, 0)} and 3 q c F such that 

Q    =(q.x  .P  ) for some x    and some P   .   By Theorem 4.5.1,  (0,2.0) n       n    n     n n n       J 

is an i-state of a derivation of a, ... a   .   Hence, 1 n 

ir     =   (e. D ) £*  (e. D   7) 
o o o ' 

-♦ (e.XH 7) 

— (ar..an,7). 

But  D    appears in the right-hand side of no production,   so that  7 = e. 

Therefore 

(e,DQ) -* (ax ... an, e) . 

Since the first component of Q    equals  6(q  , a. ... a ),  the latter is an 

FST accepting state.   Hence,   al . . . an e L(G). D 

The second half of the validity proof essentially consists of 

showing that Algorithm 4.3.1 can imitate the steps of an ECF generation. 

Theorem 4.5.3 

m 
If (p, j, f) e S. and Ux ... a., C  ,.+ 1))—» <a! ••• a^, e),  for some 

m > 0 then (p, j+l,f) e S^ . 
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Proof    (By induction on  m) 

Basis,     m - 1.   There are two cases: 

Case 1.     If C  /., 1X e I,  then i = i + 1   and C  ,.. -x = a..«.   Hence, 
 p(j+D P(j+D        1+1 

( p, j +1, f) is added to  S.   - = S .  by the scanner. 

Case 2.     If C  #..,% € I,  then we have  C  ... *, = D    for some active 
  p(j+D p(.i+D       q 
production with index  q;  i.e.,  (D    — 7) e IP(P   ,T(a. ...a.)).    Further, 

(ax ... a., D ) -* (a2 ... a^ 7) 

=  (a1 ... a^, e) . 

From the equality,   it follows that  i = &  and  y = e.   The predictor 

acting on (p,j,f) c S.   adds  (q, 0, i) to  S..   The completer acting on 

(q,0,i)   and  (p,j,f)   adds  (p,j+l,f)   to  S..    Since  i = i,  (p,j+l,f) c S.. 

Induction.     Suppose the theorem is true for  m ^ k and 

k+1 (p, j, f) € S.,    (a1 ... a., C  / +1\) > (a1 ... a-, e),   with  k ^ 1.    Since 

k > 1,   C /.<,* € I.   Hence,  the derivation may be written 

(ar-ai'cp(j+i))=(ai  •ai'Dq) 

-    <V"ai'Cql"Cqq> 

=»(a1 ... a^.. a^, e) , 

where  <Dq~Cql ... Cq-) c F^.TUj ... a^) 

Since  k ^ 1,   it is guaranteed that  C   - . . . C   - 4- e.    Hence, ql qq 

3  integers  t    ^ t    < . . . < t_   such that  t~ = i,   t- * i,   and 

V r  (1 ^ r ^ q), 
c r 

(al ■- "t       ■ Cqr   - Cqq) ""* (al - \' Cq(r+1) ■•■Cq5>- 

Since     7     c    = k,    c    ^k(l^r^q). 
r=l 
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Hence,  the induction hypothesis is applicable to each of these 

derivations. 

The predictor acting on (p,j,f) e S.   adds  (q, 0, i) to S..   For each 

r = 1, . . . , q,  the following argument applies.   Since (q, r-l,i) c S and 
r-1 c 

(a1 ... a.       , C     ) =» (a1 ... a.   , e),   it follows that (q, r, i) eS    .   By 
r-1      qr r r 

induction on r,   (q, q, i) eS,     = S*. 
q 

The completer acting on (q, q, i) e S*  and (p. j, f) e S.   adds 

(p,j+l,f) to S^. D 

Theorem 4.5.4 

If  ax . . . an e L(G),  then RECF (G, ax ... an> accepts. 

Proof 

If a1 . . . an e L(G),  then 

(1) (e, D ) ==* (a- ... a  , e)  for some  m > 0, '    o In 

(2) Mq^aj-.-aj € F. 

From the assumed special form of the grammar,  (1) is equivalent to 

(l'j     (e,X) ==> (ax ... an_1,e) for some  i > 0. 

The initialization step of the algorithm guarantees that (0,0,0) e S  . 

From (1') and Theorem 4.5.3,  it follows that (0, 1, 0) e S     -.   Since 

Cn9 = a    = -I ,  the scanner acting on (0, 1, 0) e S  _1 adds (0, 2, 0) to S . u ^        n n — J. ii 

Since '4 " appears in no other production,  (0, 2, 0) is the only state in 

S  .   Finally,   since 6(qQ, a. ... a ) is the first component of Qn, 

RECF (G, a1 ... an> accepts. D 
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4.6   ADDING  LOOK-AHEAD 

While look-ahead is not strictly necessary,   its use may be 

desirable as a means of gaining efficiency.   The case k=l is particu- 

larly attractive as a favorable trade-off point between the savings 

gained by avoiding incorrect paths and the expense of carrying look- 

ahead information in the state sets.   It was earlier remarked that the 

look-ahead technique of Earley's algorithm does not carry over to ECF 

grammars,  due to difficulties induced by the variable syntax.   In this 

section,  we discuss how these difficulties may be remedied. 

The technique we shall discuss has one theoretical shortcoming. 

Suppose the look-ahead parameter is  k.    If there are erasing rules, 

then for certain states corresponding to the erasing rules,  the look- 

ahead will be somewhat less than  k.   The term "somewhat" will be 

explicated in the discussion which follows.   Here we note that the defect 

is not really serious.   It is rather doubtful that erasing rules will be 

frequently used in specifying programming languages. 

Definition 4.6.1 

Let B   ... B^ e  V  with  i » k.    We define the function Jk by 

Jk(B1...Bi)=B1...Bk. 

For any string,   a1 . . . a.,   of terminals,   and any string,  B. . . . B, ,   of 

k  symbols in  V,   we define H,   as 

Hk(a1...a.,B1...Bk) = 

{w € z' I I w| = k and 3 y such that (a.. ... a., B. ... B,) —► (a* ... a. w, 7)} 

U {we Z   I w = w1 w2,|w| = k, and (a1 ... a., B. ... B, ) —4 (a1 ... a.w1, e)}. 
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Remark.     The second clause in the definition of H,   provides that if 

B. . . . B,   generates a string w.. whose length is less than k,  then an 

acceptable  w is obtained by the concatenation of w1 with any terminal 

string w2 such that IwJ = k - |w11 .   This provision is required pre- 

cisely because one of the Bj's may be erased. 

Definition 4.6.2 

To provide look-ahead,   a state is redefined to be a quadruple 

(p,j,f, or) where p, j,f are integers and a is a string of  k elements of V. 

Algorithm 4.6.1     (ECF recognizer with look-ahead) 

This is a function,  RECFL,  of three arguments:   an ECF 

grammar G,  a terminal string a1 . . . a ,   and a look-ahead parameter  k. 

It is computed as follows: 

Let an+j=H (l^j^k). 

Let S. be empty    (1 < i < n). 

Let P    be as specified in G. 

Let SQ = {(0,0, 0,-1 k)}. 

Let Q0 = (qo,e,Po). 

Let i = 0   and   goto  LOOP. 

LOOP: 

Process the states of S. in order,  performing one of the following 

on each state  s = (p, j, f, a): 

1.   (Predictor)     If j * p  and C  , +1) e I,  then V </>    e P. such that 

Dq = Cp(3+l>' add<q.0,i.Jk(Cp(.+2) ...Cp-a)) to S.. 
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2. (Scanner)     If i 4- p  and  C  ,., 1X c E,   then if C   ,.. 1X = a.,   then add J     v p(j+D p(j+D        i 
(p,j+l,f,a) to S.+ r 

3. (Completer)     If j = p and if a., - . . . a.+,   e H,(a1 ... a., a),  then 

V (q,i,g,ß) c Sf  suchthat  Cq(j?+1) - D      add  (q, i+l,g,ß) to  S. . 

If    S.   -  is empty,  then reject. 

If     i = n-1,  S    ■ {(0, 2, OH k)},   and 3  q e F  such that Q. ■ (q,x.,P.) , 

then accept. 

Otherwise,  let  i«i+ 1,  let Q. be computed as described in Section 4.3, 

rd let P. be its 3      component,   and go to LOOP.     end 

The above algorithm differs from its predecessor in that for each 

predicted rule application,  (q,0,i),   it carries along the symbol string, 

7,  which must follow a successful application of the rule.    When the 

right-hand side of the rule has been construed in the input string,  the 

completer verifies that the next  k symbols are consistent with  y. 

This differs from the look-ahead of Earley's algorithm in two 

respects.   (1) Earley's predicts a terminal string when predicting a 

rule and carries along this terminal string.   Our algorithm defers evalu- 

ation of the predicted terminal string until the rule has been success- 

fully applied.   (Note that this technique may be profitably employed in 

the context-free case to reduce the number of states in a state set.) 

(2) When the syntax rules are fixed,  H,   depends only on its second 

argument and may be computed for all argument values,   independently 

of the recognition process.   For ECF grammars,  this is not possible. 

It is necessary to either  (a) compute each predicate 
? 

a.+ 1 . . . a.   ,   C ^k^al '" a'' °^'   or  ^) compute,   for each symbol scanned, 
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a table of H,(a.. . . . a., a) for all possible strings a containing k symbols. 

For large k,  either method becomes prohibitively expensive.   However, 

the case of interest is k= 1,   and for that case the computation is 

reasonable. 

The procedure to calculate H^a. ... a.,B) is as follows: 

E.={B|(a1...ai,B)i>(a1...ai,e)}, 

L.(A) = {c|(A-B1...BmC7) * Pj  and B^ € E.   (1 « £ < m)}, 

L*(A) = L.(A) U {C|C € L*(B)  and B e L*(A)}, 

Z   if   Be E. 
H^.-.a-.B) = 

L'!(B) n Z   if   B 4  E 

Instead of performing this calculation for each  i,  it is possible to com- 

pute E., L.,  and H. by incremental techniques,  updating these sets for 

each input symbol read. 

It should be noted that the ECF recognizer with look-ahead does 

not,  in the strict sense,  perform k-symbol look-ahead.   Consider 

some state (p, p, f, B1... B, ) being processed by the completer.   If 

B - — e for some i  (1 ^ 4 ^ k),  then it may be that (a1 ... a., B-... B,) -* 

(a1 ... a. w, e) with |wl < k.   H,   has been "fixed up" to include all 

terminal strings of length k with initial substring w; hence,  the 

predicate a.   1... a.   ,   e H, (a. ... a., B1 ... B, ) will be true.   However, 

for the substring a. , ,    ,,- . . . a.+,,  this test is trivially satisfied. 

The effective look-ahead is not k,  but rather Iwl . 
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4.7   PRODUCING A  PARSE 

It may appear that the discussion of the preceding four sections 

is very much beside the point:   our real interest is in a parse algorithm, 

not in a recognition device.   However,   such a charge of irrelevancy 

would be misplaced.   The algorithm,   with or without look-ahead,   is so 

constructed that modifying it to produce a parse is a trivial matter: 

the method is identical to that used by Earley. 

For the sake of simplicity,  we discuss the recognizer without 

look-ahead.    When the completer acts on states (p,p,f) e S.   and 

(q, h g) e S-to add (q, j+l,g)  to S.,  this maybe interpreted as:     the 

symbol C /  , i\ = D    has been construed in the input string by means 

of the production (D    — C   , ... C   - ) e Pr .   To obtain a parse,   this H p pi pp' f p 

interpretation is recorded by constructing a pointer from  C  /•. i\ ,   in 

the production  D    — C   - . . . C  - ,  to the production  D    — C   1 . . . C  - . 
^ q       qi qq p p       pi pp 

If this sort of action is taken for each step of the completer,  a complete 

parse is obtained.   When the algorithm terminates,  the state (0, 2, 0) e S  , 

and in the production  D    — X -\   pointers lead from the symbol X to its 

parse. 

Since this technique is precisely that of Earley,  further elabo- 

ration here would be redundant.    We refer the reader to Earley's 

paper for a complete discussion. 

4.8   PRACTICAL APPLICABILITY 

For an analysis algorithm to be of practical utility for an 

extensible language or language system,   it must satisfy several cri- 

teria.   One such criterion is generality:   the class of languages or 
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grammars which it handles should be as large as possible and well 

defined,  hopefully in a "natural" fashion.   In particular,  it should be 

possible to specify extensions to the syntax without undue worry as to 

whether such extensions will be acceptable to the analysis algorithm. 

This trait is,  of course,  possessed by the above algorithm:   it handles 

any ECF grammar whatever. 

Another criterion, applicable to all analysis algorithms, is that 

the algorithm should be economical in time and space. While the time 

and space bounds for the recognition algorithm exhibited above are of 
Q 

order n  ,  it appears that far better performance will be obtained in 

practice.   One distinct virtue of Earley's algorithm is th&t in most 
3 

cases of interest it does far better than its n    bound.   This also occurs 

in the ECF case. 

It will be recalled that the possibility of a growing 
5 . 

production set 

adds a potential factor of n    in parse time.   However,  this assumes 

that most of the input string is used to specify new productions.   For 

the expected case,   in which the production sets P. are ortily small per- 

turbations about P   ,  this factor will actually be only somewhat larger 

than unity. 

Further,  Earley notes that most LR(k) grammars will parse in 

time  n using his algorithm,   even with no look-ahead.   If we consider 

an ECF grammar G and a string a1 ... a    € L(G) such that P. is LR(k) 

for all i (0 ^ i ^ n), we may expect this result to carry over.    Most 

programming languages — and indeed most natural grammars for 

programming languages — appear to be LR(k) or LR(k) with only a few 

exceptions.    For example, Korenjak [Kor67] has exhibited an   LR(1) 
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grammar which closely approximates the syntax of Algol 60.   Hence, 

it may be expected that for most ECF programming languages and 

their terminal strings,  the parse time will be of order  n.   Further, 

since the production set is variable,  it will be possible to confine 

departures from time-n behavior to local (and hopefully short) sections 

of the terminal string. 

Another desirable trait of a practical analysis algorithm is that it 

allows error detection and recovery.  Irons [lrons63] has observed that 

most Algol or Fortran programs submitted to a compiler are syntacti- 

cally incorrect.   Hence,   pinpointing errors to allow partial automatic 

correction — or even the production of intelligent error messages — is 

a problem whose solution is of real significance to the language user. 

The basic technique used by Irons carries over to the ECF parse algo- 

rithm.   All possible parses are carried along in a left-to-right scan. 

An error is detected when no possible parse can be continued (i.e.,  S.+« 

is empty),   and this is generally very close to the point in the string at 

which the error occurred.    Recovery action to be taken depends on the 

specific language and language system;  hence,  its discussion is beyond 

the scope of this paper.   However,   it is clear that the information 

needed to perform recovery is available. 
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Section 5.    NON-FORMAL  PROPERTIES 

In this section,  we deal with a variety of subjects dot appropri- 

ate or amenable to formal treatment.   We showed earlier that the 

emptiness problem is undecidable for ECF grammars;  we now wish 

to comment on the possible implications of this result.   We also 

explore some meta-topics:   an assessment of the formalism with 

respect to its descriptive power and algebraic properties,   and a dis- 

cussion of generalizations and their properties. 

5.1   COMMENTS ON THE UNDECIDABLE EMPTINESS PROBLEM 

We first note that the result appears central to the notion of an 

extensible syntax.   The construction used in Theorem 3.4.1 is based 

on fundamental aspects of the model rather than on accidental features. 

It requires only that new productions be of unbounded length and that 

they be obtained from the terminal string by a finite state mapping. 

The first requirement has been shown necessary if one is to obtain 

anything beyond the context-free languages (Section 3.1).   The second 

reflects a necessary syntactic freedom in the form of legal strings;  it 

will often be desirable to state syntax extensions in some form other 

than explicit productions.   Hence,  it appears that an undecidable empti- 

ness problem may be characteristic of language formalisms which 

admit an expansion of their syntax. 

It is believed by some that this is a grave weakness in a formalism 

for language description.  For example, Fischer [Fisch68] argues that 

a syntax formalism which has an undecidable emptiness problem fails 
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to directly describe its languages: 

It seems reasonable to assume that if one cannot 
even tell from the description of the language 
whether or not there are any sentences,  then that 
language is not directly described. 

We take issue with this argument.   On philosophical grounds wc 

find it untenable,  for it imposes an overly strong restriction on the 

notion of "directly describe".   The same criterion and argument shows 

that Algol does not directly describe algorithms,  for it is undecidable 

whether Algol programs halt. 

Pragmatically,  the argument is also weak,  for it guards against 

a danger that will not occur in practice.   If the designer of a program- 

ming language using a grammar cannot explicitly exhibit one or more 

strings generated by the grammar,  then there is a "bug" in the language. 

While it is quite possible to specify ECF grammars whose languages 

are empty or of unknown emptiness,   such grammers are not relevant 

to the task of language description and will be avoided. 

We note that,   in general,  undecidability results for a class of 

formal objects are often no obstacle to the use of these objects.   For 

example,   an invalid argument could be made to show that context-free 

grammars fail to directly describe programming languages because the 

ambiguity problem for context-free grammars is undecidable.   This is 

false precisely because in cases of interest one can insure non- 

ambiguity by special case arguments. 
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5.2   RELATION  TO CANONIC  SYSTEMS 

Some insight into the generative power of ECF grammars may be 

obtained by comparison with other formal systems that have been pro- 

posed for the description of programming languages.   As we shall show, 

canonic systems [Donov67], [Led67]   invite such comparison. We refer 

the reader to the cited papers for a full discussion of their theory and 

application.    Here, it suffices to explain that canonic systems are a 

notational variant of Post's canonical systems,  adapted to the specifi- 

cation of programming languages.    A canonic system specifies a set by 

a finite sequence of rules,  each of the form: 

a-    set A,    &   . . .   &  a      set A     I—   b   set B , 1 1 n    n   

interpreted as: 

if   a. € set A.      V i    (1 < i < n), 

then it may be asserted that   b e   set B . 

PP 

The reader familiar with canonic systems will note 

cant traits shared by these systems and ECF grammars. 

(1) Information can be stored in sets,   allowing 

separated segments of the terminal string — a mechanism 

absent from context-free grammars.   Canonic systems 

storage directly,  by set membership.   ECF grammars 

productions,  usually I-restricted,  to store such data. 

(2) Canonic systems,   as modified by Ledgard [Led67] 

extending in the following sense.   The form,  F,  for cai 

formally complete but rather austere.   It may be usefully 

a more readable form,  F  ,  by a number of extensions. 

coordination of 

and facility 

rform the 

generated use 
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form F  ,  it is possible to describe conveniently the syntax (and 

semantics) of a programming language by means of a canonic system 

C.   Now the form F    can itself be described in terms of F  by a 

canonic system  D.   If C  contains  D  as a subset,  then C  is self- 

descriptive and the formalism is self-extending.   This is somewhat 

reminiscent of Example 2.3.3,  in which an initial production set is 

used to describe the form of legal context-free grammars,   and a 

context-free grammar thus generated is itself the generator of a string. 

Having made the above observations of similarity,   we raise the 

question of specific relation.    We ask:    how do ECF grammars differ 

from canonic systems?    Formally,  the answer is simple.    Canonic 

systems generate the recursively enumerable sets;   since ECF grammars 

generate only a subset of the recursive sets,  they are strictly less 

powerful.   However,   a purely formal exposition is not altogether satis- 

fying.   It still may be asked:   just what can canonic systems do that an 

ECF grammar cannot? 

In answering the second question,   it will be useful to visualize the 

behavior of an ECF grammar by means of a block diagram: 
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u stack 
T(w) 

w 

w 
output 

Fig. 5.2.1   Block Diagram of an ECF Grammar 

This is to be interpreted as follows.     P  is the set of local productions. 

w as a For some instantaneous description,   n = (w,ß),  represent 

string already emitted by the generator and ß as being on a stack.   The 

finite state transducer  T  maps  w into T(w) and thereby changes  P. 

Solid lines in the diagram represent data flow;  dashed lines 

flow of productions. 

Consider augmenting the above block diagram to allow modifi- 

cation of the output by a finite state transduction: 

represent 
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u 

T'(w) 

stack 

6 

output 

T(w) 

Fig. 5.2.2   Block Diagram of an Augmented ECF Grammar 

Since this differs from the previous diagram only by the addition of a 

finite state transduction,   it may appear that the class of grammars 

this represents does not differ greatly from the ECF.   However,   this 

is not the case.   It will be recalled that Theorem 3.4.1 demonstrates 

that for any Turing machine  M  and initial configuration C,   there exists 

(effectively) an ECF grammar G = #(M, C) whose strings consist of 

sequences of Turing machine configurations imitating a legal derivation. 

An additional finite state transduction (Tf),   if allowed,   can be used to 

erase all of the string except the initial (or halting) configuration.   It 

follows immediately that grammars whose operation is described by 

Figure 5.2.2 generate the recursively enumerable sets and hence are 

equivalent to canonic systems. 
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Figure 5.2.1 differs from Figure 5.2.2 precisely in that all pro- 

ductions in the former model must be derivable from the output string, 

whereas in the latter model,   erasing by the second FST lifts this 

restriction.   This is the essential difference between canonic systems 

and ECF grammars:   a canonic system may perform an unbounded 

amount of computation which never appears as explicit output;  an ECF 

grammar cannot. 

5.3   ON  RESTRICTED CASES 

In Section 3.5,  we discussed two restrictions on ECF grammars. 

We demonstrated that these restrictions are non-trivial;  i.e.,  the 

families of languages so generated are proper subfamilies of the ECF 

languages.   Given this formal result,   it may still be asked whether 

either of these subfamilies would,  in practice, be an adequate substi- 

tute for the ECF. 

For the I-restriction,  a negative answer is immediate.   Since it 

restricts new productions to have terminal strings as right-hand sides, 

it prohibits recursive definition of new syntactic classes.   It thereby 

rules out most of the power of context-free productions.   A syntax 

extensible under such conditions would be of little interest. 

The rule number bounded restriction, with some constant k, 

appears to be somewhat more acceptable. By choosing k large enough, 

one can be assured that the restriction will rarely be noticed. Further, 

were the parser of Section 4 implemented on a real computing machine, 

one could be equally assured that such a bound would be imposed by the 

implementation.   However,  this argument must be rejected.     When 
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studying the properties of various automata,  it is recognized that: 

(1)  all strings of interest are shorter than some finite constant,   say 

10       ;  (2) all realizations of these automata by real computing 

machines impose restrictions due to a finite address space,   say 2 

It would be a mistake,   however,  to conclude that all automata should 

be studied as finite state automata.   For most practical purposes,   2 

is an adequate approximation to infinity and the properties of interest 

are those obtained by ignoring the limitations imposed by finiteness. 

It is for this reason that we choose not to use rule number bounded 

grammars as our formalism:   the unbounded case far better embodies 

the intuitive notion of an extensible syntax. 

5.4   SOME COMMENTS ON  THE  FORMALISM 

In the preceding two sections,  we  have  dealt with several 

possible modifications of the ECF formalism.   We wish to continue this 

discussion,  assessing the chosen formalism in comparison to its 

possible generalizations and rivals. 

It should be noted that the family of ECF languages has two promi- 

nent characteristics which set it apart from most other generalizations 

of context-free languages:   (1) it has a recognition algorithm which runs 

in at worst polynomial time; (2) it has very poor algebraic properties 

(e.g.,  non-closure under even length-preserving homomorphism.    The 

former,  coupled with an expected linear time for common cases, 

makes it possible to use ECF grammars in the specification of a 

practical programming language.   The latter makes the theoretical 

study of ECF grammars somewhat difficult.   The two characteristics 
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are,  of course,  intimately related.   A polynomial parse time is possible 

because generation proceeds left to right (only the leftmost intermediate 

symbol may be rewritten) and because productions are produced 

deterministically from the terminal string.   However,  the strictly left- 

to-right generation induces asymmetries in the family of ECF languages; 

for example,  it is not closed under reversal.   (We have riot given a 

formal proof of this,  but the result should be obvious.)   Were we to 

allow a nondeterministic FST with multiple output streams,  we could 

obtain additional algebraic properties,  e.g.,  closure under non-erasing 

homorphism.   This would,  however,  make a parse far more time- 

consuming.   In short,  many features of the formalism which make 

possible an efficient parse are responsible for the lack of "nice" alge- 

braic properties.   In choosing the ECF formalism,  we chose to sacri- 

fice the latter to the demands of the former.   This choice is 

appropriate to the purpose at hand:   the description of extensible 

programming languages. 

We wish to note one possible generalization which is consistent 

with this choice.   It will be recalled that Example 2.3.3 is an ECF 

grammar,  each of whose strings has the form:   the encodement of 

some context-free grammar G followed by a string in the language 

L(G).   This will not generalize to the case where G is an ECF 

grammar,  for the formalism provides no way to specify and use a 

variable FST.   However,  an extension to allow this is not at all diffi- 

cult to add.   An FST can be completely specified by a table consisting 

of lines,  each of the form: 

si ai vv. 
1 

s/ 
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to be interpreted as:     when in state s. if the input symbol is a.,  then 

output string w. and go into state s/ .   Such a table line can be directly 

represented by a string: 

[=   w.    //   a.   -   w.    //   s/    d( 
"      l   "      l 1   "      1 

and such a string may be emitted by the FST.   If we agree to treat sub- 

strings with "p ",   "Z| " brackets as new lines in the FST specification 

table,  we immediately obtain a variable FST.   Clearly,  the parse algo- 

rithm of Section 4 can be modified to perform the necessary actions to 

imitate this additional variability with,  at worst,   a polynomial increase 

in time.   As usual,   if this variability is used circumspectly,  then the 

increase will in fact be only a small factor.   We have refrained from 

introducing this generalization into the formalism only because no clear- 

cut application for it could be found.   In the absence of any demonstrated 

need for the facility,  simplicity dictates its omission. 
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Section 6.    CONCLUSION 

We shall conclude this paper by cleaning up a number of loose 

ends and displaying explicitly a few others.   This will include a 

survey of research topics for future work and comments on the 

relation of ECF grammars to the larger topic of extensible program- 

ming languages.   By and large,  these categories are disjoint; the few 

exceptions merit special consideration. 

6.1   OPEN  PROBLEMS 

The formal theory of ECF languages, as developed in Section 3, 

contains a few open questions. We do not know, for example, whether the 

family is closed under inverse homomorphism, or whether it is contained 

in the context-sensitive languages or the scattered-context languages. 

Also, we do not have a characterization of the output string emitted by 

the FST. It is clearly not context-free —but is it, for example, ECF? 

In addition to the truly open questions,  we have a number of con- 

jectures for which we lack suitable proofs.   For example,  it would be 

of interest to prove that the ability to form new intermediate symbols 

(i.e.,  members of VM) is formally required.   We show in Appendix I 

that context-free grammars lose power if the set of non-terminals is 

bounded,  but the proof does not carry over to establish the desired 

result concerning ECF grammars.   Turning to a classical topic in 

formal language theory,  we conjecture — but cannot prove — that 

there exist inherently ambiguous ECF languages.   (Note that this does 

not follow from the inherent ambiguity of context-free languages.) 
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The parse algorithm invites a number of interesting,  but rather 

difficult,  questions.   It would be of interest to prove the conjecture that 

strings  a. . . . a    such that P. is LR(0) for all i can be recognized in 

time n.   More generally,   a characterization of time-n grammars would 

be useful.   Some theorems relating look-ahead to recognition time 

would also be useful.   There is the practical question:   should look- 

ahead be used in some given language system?    This will likely depend 

on the language,   and indeed on the particular string,  but some rule-of- 

thumb for common cases should be possible.   We assume that either 

k=0 or k=l will be optimal,  but it is not clear which.   Practical experi- 

ence in applying the algorithm may be the only way to make a choice. 

6.2   APPLICATION TO EXTENSIBLE LANGUAGES 

In the Introduction,  we delimited the province of this paper to 

issues in syntactic extension.   We now wish to lift this restriction and 

discuss other aspects of extensible languages which are relevant to a 

variable syntax. 

We assume that the parser produces as output a tree structure 

which represents a complete parse of the input string.   With an 

appropriate mechanism for data type definition,  this tree may be 

treated as a structured data object (of mode program) and hence is 

suitable for manipulation by the semantic interpreter.   Note that this 

requires that an appropriate mode declaration be associated with each 

new production,   so that an instance of a new production construed in 

the input string be interpretable as a data object. 

As in the usual formal model for programming languages,  the 
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semantic interpreter operates on the data object program to produce 

some "meaning".    It was noted in the Introduction that along with each 

new production, A — a, it is necessary to specify semantics,  e.g., the 

meaning of A  in terms of a.   We add here that this semantic specifi- 

cation completes the mode definition of the production. 

It is possible that a string will be ambiguous with respect to the 

syntax.    Such ambiguities will be represented in the tree structure as 

multiple parses of some intermediate symbol, and can thereby be iden- 

tified.   We assume that tht interpreter will choose one of the parses, 

disambiguating on semantic grounds.   Making this choice may be a non- 

trivial problem.   Indeed,  study of semantic disambiguation in program- 

ming languages is a largely unexplored field.   Consideration of the topic 

would be outside the scope of this paper.    Here, we merely point out 

that if the choice is formally specified and hence well defined, this pro- 

cedure seems perfectly acceptable.    It may prove very useful in allowing 

concise specification of certain language constructs for which an unambig- 

uous syntax would be cumbersome. 

We introduced the notion of extensible syntax by a hypothetical 

extension of Algol, in which productions were declared in blockheads 

and had their scope determined by block scoping.    In the interest of 

generality, we promptly abandoned this scope rule and replaced it with 

a formalism in which the scope of a production is essentially the pro- 

gram text which lies between the points at which it is added and deleted. 

To conform to the well-established tradition of block scoping in pro- 

gramming languages, it might be useful to include block-scoped produc- 

tions as a special case.    This requires only that productions added in 
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a block be deleted at the block end.    This could,  of course, be imposed 

as a requirement on the source text string, just as one could require 

that declared variables be explicitly "undeclared11.    It seems preferable, 

however, to allow the semantic interpreter to handle the matter.     We 

need only allow a limited interaction between the parser and interpreter; 

in particular, the latter is permitted to delete productions from the 

local production set.    This is not strictly permitted in the framework of 

the ECF formalism, but in this case the departure is not significant. We 

could, for example,  define a strict language in which explicit deletion of 

productions (and variables) is required, and then specify text transforma- 

tions which map the desired language into the strict language. 

In conclusion, we wish to note the analogy between the notion of 

procedures and the notion of ECF grammars.    The former allows vari- 

able semantics by declaration and subsequent use of program schema. 

The latter allows variable syntax by means of declaration and use of 

structural forms.    Taken in concert, the two should permit extensible 

languages with rich, fluent dialects. 
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APPENDIX I 

A  THEOREM ON CONTEXT-FREE GRAMMARS 

We prove a remark,  made in Section 2.1, that the family of 

languages definable by context-free grammars becomes increasingly 

large as the number of non-terminal symbols is increased. 

Definition.     Let G = (V, Z,P,X) be a context-free grammar.   The rank 

of G is defined to be the number of symbols in V - Z. 

Theorem 

Let Z be a fixed terminal vocabulary of at least two symbols. 

Then Vk^l, 3 a context-free language L CZ such that for all 

context-free grammars,  G',  if L,   = L(G') then the rank of Gr  is ^ k. 

Proof 

With no loss of generality,  we may assume that 0, a € Z. 

Consider the schema of productions: 

A1 — Oa^Aj | A2 

A2 — 0a   0A2IA3 

AN^ 0aN0AN| 00. 

For each k,  consider G,   = (V    Z, P,, AJ with V,   = {Aj, Ag, . . . A2,} 

and P,   given by carrying the schema up to N = 2k.   Then let 

Lk = L(Gk) 

U/l = {(0a*0) "(Oa^O) '. . . (0a*K0) 2k   *2k| . 
ll'l2" "^k !}• 

It was brought to our attention after this work had been completed that 
a similar result was previously obtained by J. Gruska [Gru6 7]. 
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Now let G = (V, E,P,X) be any context-free grammar such that 

L(G) = L,. We shall show that the rank of G is ^ k. The proof uses 

the following lemma proved by Odgen [Odg68]. 

Lemma 

For every context-free grammar G = (V, I,P,X), 3 an integer p 

such that for every string w e L(G),  if p or more distinct positions of 
* 

w are marked,  then 3 A € V-Z and strings a,ß, 7>6,ju e  S    such that 

(1) X =^ aAn =* aßAöß —4 aßybß = w, 

(2) 7 contains at least one marked position, 

(3) either a and ß both contain marked positions or 6 and \x 

both do, 

(4) ßyö  contains at most p marked positions. 

We refer the reader to the cited reference for a proof of the lemma. 

We here note only that it is a generalization of a well-known theorem 

of Bar-Hillel,  Perles,   and Shamir [Hop69]. 

Let 9. = max(2p-l, 3).   Consider the string 

1     o       9 9V 
Wj = (Oa 0)* OaO . . . 0aZK0 , 

st      rd th and mark the 1    ,3     ,   . . . i     of the a's.   Applying the lemma, 
>'< 

3 A.   e V - I  and strings a«, ß*, 7., 6., ß+ e 2    such that 

(1)       X=U a1Ai ß1 -I* a1)31Ai  6 ^ —¥ oi^^^i^i = w! 

(2f)       either ß. or 6< contains at least one of the marked a's . 

kl We claim that either j3    or 6. has the form "(OaO)      " for some 

k..   The argument is as follows.   Suppose ß1 contains a marked "a". 

From (1),  it follows that ar-ß« 7-iöjA*., € L(G) V n.   From the form of L, 

h   ki this implies that ß. = (Oa    0)      for some j-, k-.   Since j3- contains at 
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least one marked "a",  it must be that j- = 1 and ß. = (OaO)      for some 

k-.   If 6 - contains a marked "a",  the same argument shows that 
kl 6- = (OaO)     ,  for some k-.   Hence,  (2f) maybe restated las: 

ki (2)       Either ß. or 6    has the form (OaO)     ,  for some k.. . 

2    9       ^ 2k 
Next,  consider the string:   w2 = OaO (Oa 0)    0a 0 . . . 0a    0 

and let the marked symbols be the 2nd,   6th,   10th,   . . . (2i)th instances 

of the symbol "a".   Repeating the argument,  it follows that: 

(1) X4 a2A   ß2 ±» «2ß2
Ai9

62'l2 ■*♦ a2ß2')'262*i2 = W2 '  for 

2 2 jj, 
some A.    e V - E,   and »2^2,72,62'M2 e Z 

2 k 
(2) Either ß2 or 62 has the form (0a20)  2,  for some k2 . 

Repeating the argument 2k times,  we have that for all r 

(1 < r < 2k),   3 A.    e V -1,  and <*r, ßr, ?p, 6r, nT e I* such that: 

(1) X=^ arA.  Mr =^> ^rßrAt  6r/ur ^ ^rßr7rör/ul   . 

(2) Either ßr or 6r has the form (0ar0)  r,  for some kr . 

We claim that no three of the A. 's may be the same; 

4, ' lj 

ip 4, m, n such that: 

(1) l^i<m<n< 2k 

(2)       A.    = A.      = A. 
l£        xm        ln 

We will suppose the contrary and show a contradiction. 

.   As a first step,  we claim that if A.    = A.    , then it must be that 

k k ljl m 
ft       ft m       m 

ß* = (0a 0)       and 6     = (0a   0)      .   Indeed,  there are only three other 

cases,  each leading to a contradiction.   We have that: 
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nrm    rrn'n n   n    mm 

= O»™ ^nßnTn(OanO)  n a (OamO)    1 u     c 
k k 

n^v   n      ,^  m^v   m 
nrm    n*n'n n m 
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Case 1.     /3jg = (Oa^O)  l  and ßm = (0am0)  m.   Hence, 

^Vm(0am0)  m^(0ai0)  S^^ 6mMm 6^ c   WG) 

which is impossible,   since  i < m. 

Case 2.     6jg = (Oa^O)  *  and ßm = (0am0)  m.   Hence, 

m rn 0 0 
a^^m(0a   0)       <^7,<0a 0)      u£ 6m„m 6^ c  L(G) 

which is impossible. 

Case 3.     6^ = (0ai0)  *   and   6m = (0am0)   m.   Hence, 

k k 

"ißi ^m^Vi6^0*™0*  m%(0a0)      ^ie   L<G> 

which is impossible.   This proves the first claim. 

Now,   suppose that A.    = A.      = A.   ,  with   l^i<m<n^2k. 
2. m n 

There are two cases. 

k 
Case 1.     ßn = (0an0)  n.   Hence, 

X^ö ß A.   6   u rv n   l    n   n n 

^«A^iVi^e 6n% 
« an(0an0)  n ^(Oa^O)   l 7/^ 6^ €   L(G) 

which is impossible. 

k 
Case 2.     6    = (0an0)  n.     Hence, n 

X=^  a   ß    A.    6     JU nvm   l      mm m 

m'   TY^       TV   n    n    n      n       YYI 



which is impossible. 

Hence,  no three of the 2k A's are the same.   Therefore,   at least 

k of the A's must be distinct,  which proves the theorem. D 
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APPENDIX II 

DEFINITIONS  OF  SOME  STANDARD  TYPES OF AUTOMATA 

A.    Pushdown Store Automata 

Definition.     A pushdown store automaton (pda) is a 7-tuple = 

(K, 2, r,6,|,q , F)  where K is a finite set of states,   2   and T  are 

finite vocabularies,   {   € T, q    e K is the initial state,  F S K is the 

set of final states,  and 6  is the transition function 

sic 

6   :   K X (2 U {e}) X T - finite subsets of K X T  . 

The operation of a pda is described by specifying the form of a 

machine configuration or instantaneous description and the transitions 

which take an instantaneous description into its possible successors. 

Definition.     An instantaneous description (id) of a pda   M = (K, 2,  T, 

6, \ ,  q ,F)  is an element of (K X 2   X T  ). 

The transition between an id.  and a successor id., ,   is denoted 
J j 

by id.    |— id-+i   and is obtained as follows. 
J J 

(1) (q   ,    aw,yA)   I— (q',w, y z) if   (q',z)   e6(q,a,A) 

(2) (q,w,yA)   |_(q',w,yz) if   (q', z)   e 6(q, e,A) 

where q, q'   € K,  a € 2,  w € 2 ,  y € T   ,  and A e T.    An id to which 

neither of the above rules applies has no successor.    The ancestral of 

is denoted by   I—. 

Definition.     The language accepted by a pda   M = (K, 2, T,6, $,q , F) 

is defined 
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L(M) = {w € 2 3   qf e F   and   u» e T*  such that (q 

B.   Linear-Bounded Automata 

Definition.     A linear-bounded automaton (lba) is an 8-tuple = (K, V, 2, 

6, $*(?»q1*F), where K is a finite set of states,   2, V are finite vocabu- 

,w, j)  |JÜ(q',e,u')}. 

laries,   2 £ V,  q, e K and q,   is the initial state,  F £ ll 1 K is the set of 

final states,   $,£ f. K U V, and 6  is a set of quintuples given by 

6j C (KX VXKXVX{0,1,-1}) 

62 Q (K X{<?} X K x{<*} X{0, l}) 

63 £(KX{$}XKx{$}x{-l,0,l}) 

6=   6j  U62U63. 

The operation of an lba is described by specifying the form of a 

machine configuration, or instantaneous description, and the transitions 

which take an instantaneous description into its possible successors. 

Definition.     An instantaneous description (id) of an lba   M = (K, V, 2, 

6, $,<?,q1,F) is an element of (V* X K X V*), where V = V U {$,<?}. 

The transition between id.  and a successor id.+ ,   is denoted by 

idj 
id.,,   and is obtained as follows: 

(1) if (q,Y,qf,Z,0) e 6,   then   (w^qjw^  I— (wp q\ Z w2) 

(2) if (q,Y,q',Z, 1) e 6,   then   (w^Yw^  I— (WjZ, q», w2> 

(3) if (q,Y,q',Z,-l) € 6,   then   (WjX^Yw^  I— (w^ q\XZ w2), 

where w,,w2 € V ,X,Y, Z € V, and q, q1 € K.   An id to which none of 

the above rules applies has no successor.    The ancestral of   I— is 
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denoted by   I—.    The language, L(M),  accepted by an lba   M  is defined: 

L(M) = {w 6 2    I  there exists w' e V    and q e F  such that (e,q.,£w$) 

(<?w'$,q,e)}. 

C.    Turing Machines 

Definition.     A Turing machine is a 6-tuple = (K, 2, T, 6, q , F)  where 

K is a finite set of states,   2 and T are finite vocabularies,   2 QT, 

q   €   K is the initial state,  F £ K is the set of final states,  and 6  is a 

Definition.     An instantaneous description (id) of a Turing machine 

M = (K, 2, T, 6, q    F) is an element of (I** X K X T+). 

The transition between id.  and a successor id., ,   is denoted by 
J j 

finite set of quintuples 

6 c (K - F XT XKXT x{o, l,-l}). 

The operation of a Turing machine is described by specifying the 

form of a machine configuration or instantaneous description,  and the 

transitions which take an instantaneous description into its possible 

successors. 

id.   I— id.,,   anc* is obtained as follows: 
j J 

(1) if (q,Y,q\Z,0) e 6     then     ty q, Yw2)   I—(wj, q\ Z w2) 

(2) if (q,Y,q',Z, 1) e 6     then     (Wj, q, YX w2>   I— (w}Z, q» ,X Wg) 

(3) if (q,Y,q\Z, 1) e 6     then     (w}, q, Y)   I— (WjZ , q» ,*>) 

(4) if (q,Y,q\Z,-1) e 6     then     (WjX.qJWg)   I— (w^ q',XZ w2) 

(5) if (q,Y,q',Z,-1) € 6     then    (e,q,Yw2>   f-(e,q'^Zw2) 

where w,, w2 e T   , X, Y, Z e T,    q, q' e K,  and v> e T  is a special symbol 
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which denotes a "blank tape square".    An id to which none of the above 

•       1 ■ * rules applies has no successor.    The ancestral of I— is denoted by 

Definition.     The language accepted by a Turing machine M = (K, S, T, 

6, q , F) is defined 

L(M)={w£2*    | 3   w',wM€r>,:   qf e F   suchthat   (e,qQ,w)  \^- (w\ qf, w»)}, 

117 



REFERENCES 

[Aho68] Aho, A. V. "Indexed Grammars -An Extension of Context- 
Free Grammars," Journal of the ACM, Vol. 15, No. 4, 
pp.  647-671,  October 1968. 

[Aho69a]    Aho, A. V.    "Nested Stack Automata,"  Journal of the ACM, 
Vol.   16, No.  3,  pp.   383-406, July T$W. 

[Aho69b]     Aho, A. V.    Private communication. 

[Bell68]      Bell, J. R.    The Design of a Minimal Expandable Computer 
Language,  Doctoral dissertation, Stanford University, 
December 1968. 

[Chea66]     Cheatham,   T. E.    "The Introduction of Definitional Facilities 
into Higher Level Programming Languages," 
Proceedings of the AFIPS Fall Joint Computer Conference, 
Vol.  29,  pp. "323^537, NovemBeFTSfäü: 

[Chea68]    Cheatham,  T. E.    "On the Basis for ELF -An Extensible 
Language Facility,"  Proceedings of the AFIPS Fall Joint 
Computer Conference,  Vol.  33,  pp.  937-948, November 
iww.  

[DiFor63]   Di Fornio, A. C.    "Some Remarks on the Syntax of Symbolic 
Programming Languages,"  Communications of the ACM, 
Vol.  6, No.   8,  pp.  456-460, August 1963. 

[Donov67]  Donovan,  J. J. ,  and Ledgard,  H. F.    "A Formal System for 
the Specification of the Syntax and Translation of Compu- 
ter Languages,"   Proceedings of the AFIPS Fall Joint 
Computer Conference,  Vol.   3l7~pp.   553-56Ö, November 
TSZT.  

[Earl68]     Earley, J.   An Efficient Context-Free Parsing Algorithm, 
Doctoral dissertation,  Carnegie-Mellon University, 
August 1968. 

[Fisch68]   Fischer,  M. J.    "Grammars with Macro-Like Productions," 
Mathematical Linguistics and Automatic Translation, 
Report No. NSF-22, Maying:  

[Gall67]      Galler,  B. A. ,  and Perlis, A. J. , "A Proposal for Definitions 
in Algol,"  Communications of the ACM,  Vol 10, No.  4, 
pp.  204-219, April 1967. 

[Gar68]       Garwick, J. V.    "GPL, a Truly General Purpose Language," 
Communications of the ACM,  Vol.   11, No.  9,  pp.  634- 
638, September lW87~ 

118 



[Gins68a]   Ginsburg, S.,  and Greibach, S.    "Abstract Families of 
Languages,"  System Development Corporation Report, 
TM-738/044/00, March 19681 

[Gins6 7] Ginsburg, S., Greibach, S.A., and Harrison, M. A. "Stack 
Automata and Compiling," Journal of the ACM, Vol. 14, 
No.   1,  pp.   172-201,  January 19ÖY. 

[Gins68b]   Ginsburg, A.,  and Spanier, E. H.    "Control Sets on Gram- 
mars,"  Mathematical Systems Theory, Vol.2, No.   2, 
pp.   159-T771 

[Greib68]   Greibach, S.,  and Hopcraft, J.    "Scattered Context Gram- 
mars,"  System Development Corporation Report, 
TM-738/Ö43/ÖQ,  February 1058: 

[Gru67] 

[Hop69] 

[lrons63] 

[Kas6 7] 

[Knu6 5] 

[Kor67] 

[Led6 7] 

Gruska, Jozef.    "On a Classification of Context-Free Lan- 
guages,"  Kybernetika 3 (1967),  pp.  22-29. 

Hopcroft, J. E., and Ullman, J. D.    Formal Languages and 
Their Relation to Automata, Addison-Wesley Publishing 
Company, Reading, Massachusetts,   1969. 

Irons,  E. T.    "An Error-Correcting Parse Algorithm," 
Communications of the ACM,  Vol.  6, No.   11,  pp.  669- 
673, November \ttT. 

Kasami,  T., and Torii, K.    "Some Results on Syntactic 
Analysis of Context-Free Languages,"  Record of Tech- 
nical Group on Automata Theory of Institute of Electronic 
Communication Engineers, Japan,  January 1UB7. 

Knuth,  D. E.    "On the Translation of Languages from Left to 
Right,"  Information and Control,  Vol.   8,  pp.  607-639, 
1965. 

Korenjak, A. J.   A Practical Approach to the Construction of 
Deterministic Language Processors, unpublished paper: 
RCA Laboratories! Princeton, New Jersey, September 
1967. 

Ledgard,  H. F.    Canonic Systems: A Self-Extending Formal- 
ism for Defining the Syntax ahd~"Translation of Computer 
Languages,  unpublished paper:   Department "ol Electrical 
Engineering, Massachusetts Institute of Technology, 
Cambridge, Massachusetts. 

[Naur63]    Naur,  P.    "Revised Report on the Algorithmic Language 
Algol 60,"  Communications of the ACM,  Vol.  6, No.   1, 
pp.   1-17,  January 1963. 

119 



[Odg68] Odgen, W. "A Helpful Result for Proving Inherent Ambiguity," 
Mathematical Systems Theory, Vol. 2, No. 3, pp. 191-/94 
September 196TH 

[Ros69]       Rosenkrantz,  D. J.    "Programmed Grammars and Classes 
of Formal Languages,"  Journal of the ACM, Vol.   16, 
No.   1,  pp.   107-131, January 196TT. 

[Whit68a]   Whitney, G. E.    "A Table Directed Grammar for the Specifi- 
cation of Context-Sensitive Languages,"   Proceedings of 
the Second Annual Princeton Conference on Information 
Sciences and Systems,   1968. 

[Whit68b] Whitney, G. E. "The Generation and Recognition Properties 
of Table Languages," Proceedings of the IFIP Congress 
68,  Edinburg,  pp.  B18-BZZ, AUgusFISFB. 

[Whit68c]   Whitney, G. E.    "The Position of Table Languages Within the 
Hierarchy of Nondeterministic On-Line Tape-Bounded 
Turing Machine Languages,"  IEEE Conference Record 
Ninth Annual Symposium on Switching and Automata 
Theory,  pp.   120-130, OcTober 1968. 

[Whit69] Whitney, G. E. "An Extended BNF for Specifying the Syntax 
of Declarations," Proceedings of the AFIPS Spring Joint 
Computer Conference,  Vol.  34,""~May 1969. 

120 



Chapter 3 

THE  DESIGN AND FORMAL  SPECIFICATION O] 

Section 1.   INTRODUCTION 

In this chapter,  we deal with three topics:   (1) the design of the base 

for an extensible programming language,  (2) the specification of semantics 

of programming languages,  (3) the application of (2) to (1). 

This study therefore draws upon two areas of current research in 

programming languages:   the analysis and modeling of semantics and the 

quest for extensibility.   While there has been an abundance of work in each 

of these areas,  little attention has been given to their interaction.     Our 

interest is motivated less by an aesthetic desire for syncretism than the 

belief that semantic modeling and language extensibility are necessarily 

complementary.   Neither study is likely to bear fruit alone,  whereas taken 

together they provide a handle on the synthesis of tractible programming 

languages. 

The formal study of semantics predates the study of extensibility by a 

number of years.   The former was given its initial impetus by the Algol 

report [Naur60] of 1960.   The precision and clarity of its BNF syntax 

specification presented a sharp contrast to the loose and often obscure 

English language specification of semantics [Dijk62].   True,  the syntax 

was found to be ambiguous [Cant62],  but the exactness of the formal 

description made it possible to localize the difficulty,  discuss it unam- 

biguously,  and repair it in the revised report [Naur63].   Further,  the 

formal syntax description served as a departure point for a significant 
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body of research in parsing techniques,  formal language theory,  and related 

areas. 

The semantic specification,  on the other hand,  has never been alto- 

gether satisfactory.   It is far from readable and serves as a reference only 

with the aid of considerable exegesis.   Despite its attempt at precision,  it 

contains a large number of ambiguities many of which are sufficiently 

complex that they could not be resolved in the revised report (c.f. [Knu67] 

for a discussion of these). 

The disparity between syntactic and semantic specifications invited 

research into the techniques and formal models which could be brought to 

bear on the latter.   This work is surveyed in section 2.1;  here,  two points 

should be noted.   (1) A wide variety of approaches were tried based on 

models ranging from translator writing systems to the \-calculus.   (2) This 

work was never altogether successful.   The desired semantic specifications 

were often attained via unacceptable circumlocations or at the price of 

unwieldy bulk.   Rarely is a point better explicated in the model than in 

equivalent English text.   Never does such semantic description approach 

the clarity and utility of syntax description via BNF. 

In retrospect,  it is apparent that these efforts were predestined to be 

unsuccessful.   The semantic domains to be described were complex, 

inhomogenous,  and generally ad hoc;  the injection of these characteristics 

into the models describing them was inevitable.   An analogy with syntax 

may be useful:   while it is in principle possible to devise a formal schema 

and use it to specify the syntax of Fortran,   such efforts would be misplaced. 

The weakness of attempts at modeling the semantics of many programming 

languages is often less an indictment of the modeling technique than of the 

language. 
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Turning from semantic modeling of languages to their use by the pro- 

gramming community,  one finds quite another indictment of most languages. 

Despite their complexity, they are never sufficiently complete to express 

all algorithms easily and efficiently.   Successive generations are larger, 

more complex,  more expensive and still incomplete.   Following the 

example of assembly languages,  it was proposed' around 1965 that develop- 

ment should be shifted from ever larger monoliths to languages containing 

definition and extension facilities.   Supplied with such a language,  a pro- 

grammer would be able to create for himself a dialect appropriate to his 

needs. 

This attempt to aid the language user had an unexpected impact upon 

the theoretical study of languages.   It was soon realized that a programming 

language capable of extension could be considerably simpler than con- 

ventional programming languages:   the accretions of special facilities 

introduced to satisfy various user demands could be removed with the 

knowledge that they could be obtained,  when required,  as extensions.   The 

turn to simpler yet more powerful languages made the job of semantic 

specification simultaneously more practicable and more important.   The 

semantic specification need encompass only the language core, for the 

semantics of extensions can be derived by projection onto this core.   Hence, 

the specification need cover a considerably smaller domain.   On the other 

hand, this semantic projection brings the core under sharper scrutiny. 

Since any ambiguity in the core would be propagated throughout,  ambiguity 

must be debarred at the outset.   In fact,  a stronger condition is required: 

'The idea seems to have been arrived at independently by a number of 
researchers.   These include Garwick,  Ingerman,   Lucas,  Steel [Gar67], 
Galler,   Perlis [Gal67], Gheatham [Chea66],  and Leavenworth [Leav66]. 
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the description must be sufficiently clear that the unique meaning is 

apparent to the programmer,   without the intermediary of a language 

priesthood. 

In the above paragraphs,  our description of extensible languages and 

their extension mechanisms has been deliberately loose.   We shall give a 

more precise description,  delineating two classes of extension.   In each of 

these,  a formal semantic specification plays an important role. 

The analogy with assembly language (i.e.,  their macro facilities) 

suggests extension mechanisms designed to permit paraphrase.   Given a 

concept which can,  in principle,  be expressed in some language,  a para- 

phrase extension is aimed at expressing this concept in a fluent notation 

or efficient fashion.   Following the dictum of Perlis,  this notation is chosen 

to suppress the constant and display the variable.   The goal of this work is 

to allow the programmer to express precisely the meaning of an algorithm, 

not some equivalent but clumsy and unreadable circumlocation of this 

meaning. 

Since the paraphrase extension facility maps all meaning into the 

semantics of the language base,  this imposes strong requirements on that 

base.   Clearly,   its concepts must span a large,  interesting space.   Of equal 

importance is that its representations,   in particular its representation of 

data',  be as efficient as possible.   A formal semantic specification plays 

three roles in the design of such a base.   (1) It serves as a frame of 

'For example,  linked lists of elements with dynamic type are a perfectly 
general data representation from which any structure or behavior can be 
constructed.   Their exclusive use would,  however,  be intolerable in many 
problem areas.   Here as elsewhere in semantic modeling,  it is necessary 
to distinguish between representation and effective representation. 
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discourse, allowing analysis and comparison of various proposed components 

of the base.   (2) It exposes omissions and inhomogeneities,  for the treatment 

of analogous structures in dissimilar fashion is readily apparent.   (3) It 

brings into the domain of discourse choices which might otherwise be taken 

for granted and never be subjected to critical examination. 

The second class of language extensions is motivated by the observation 

that certain desired notions may well fall outside the semantic space spanned 

by the base language.   Given the growth of programming and its theory,  this 

seems inevitable,  regardless of how well-chosen the base may be.   While 

this limitation is by no means an excuse for slipshod initial design,  it must 

be recognized and dealt with.   It can indeed be handled if the notion of 

extensible language is taken in its broadest sense.   A properly designed 

formalism for semantic specification can,  as noted above,  describe not only 

the actual language chosen but also those choices rejected,  in fact a wide 

class of languages.   Indeed, the ability to do so is one criterion for assess- 

ing the power and generality of a formalism.   It may be that while the 

desired extension cannot be expressed as a paraphrase,  it can be defined 

by means of the semantic model.   If the language includes handles on its 

underlying semantic specification,   such a definition can be incorporated 

into the language.   We will refer to such an addition as a metaphrase 

extension or,   more briefly,   as a metaphrase. 

There will be a number of types of metaphrase extensions.    Frequently, 

the desired extension will be intimately involved in the existing language. 

For example,   a small change to the evaluation rules,  perhaps using an 

existing mechanism in a different fashion will produce a large change in 

the language.    Alternatively,   a metaphrase may specify some new domain 

of discourse,   e.g.  the addition of pattern-matching facilities to a language 

which formerly had none.    In such cases the metaphrase may act largely 
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as an independent module with relatively little linkage to existing routines. 

One point should be noted.   While a metaphrase extension will completely 

specify the semantics of an extension, there remains the problem of imple- 

menting the extension.   Unless the semantic model is used as a direct 

implementation,  the metaphrase written in the metalanguage must be trans- 

lated to a form compatible with the implementation.   How this translation is 

performed depends on both the model and particular implementation. 

Clearly,  its work is facilitated if the model and implementation obtain their 

results by analogous processes.   This implies the use of homologous infor- 

mation structures and evaluation rules so that the model becomes an imple- 

mentation guide as well as abstract definition. 

In this chapter,  we develop a base for an extensible language and a 

technique for its formal specification.   Our thesis is that the two activities 

are necessarily complementary.   The formal specification should not be an 

after-the-fact description of the base but rather serve as a tool to be used 

in its design.   Conversely,  while the base must span a large semantic 

space,  it should be kept small and homogenous  so as to make practical the 

task of semantic description.   Further, both base and its formal specifi- 

cation are to be so designed as to permit extension,  both paraphrase and 

metaphrase. 
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encountered in the 

Section 2.   SURVEY OF PREVIOUS WORK 

There already exists a large body of research into both formal semantic 

specification and extensible languages.   In no small measure,  our work 

builds on previous research which in turn builds on earlier work.   Hence,  a 

survey of the field is required, to an extent not frequently 

young study of computer science. 

A complete survey,  doing justice to all the relevant research, would be 

far beyond the scope of this paper.   We have neglected many peripheral 

issues,  for the treatment of which we refer the reader to survey papers by 

Feldman [Feld68] and Wegner [Wegn69] .   Further,  we have restricted 

attention to those papers which are most significant;  where equivalent work 

was carried out in several projects,  we have chosen one representative 

instance.   Even so,  this section has grown to embarrassing proportions. 

While believing it necessary,  we regret the inclusion of a 

this paper and beg the reader's indulgence. 

long survey in 

2.1   SEMANTIC  SPECIFICATION OF  PROGRAMMING  LANGUAGES 

In the introduction,  it was noted that a wide variety of models have been 

proposed for semantic specification.   In contrast to syntactic specification 

where a satisfactory technique,  BNF,  was invented almost as soon as a 

need was recognized, no completely satisfactory semantic technique has 

yet emerged.   The problem,  well-recognized but unsolved for several years, 

has proved a spur to repeated efforts employing many diverse models and 

sundry variations.   Consequently,  the field has seen considerable experi- 

mentation — most of it valuable. 

The next four sub-sections survey and assess the most significant 

models,  analyzing the potentialities and limitations of the various approaches 
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they take.   These include compiler-based models,  \-calculus models, 

several interpreter models,  and the ULD model developed by IBM Vienna 

Laboratories.   Following the survey,  we draw some conclusions concerning 

semantic specification and its relation to programming languages. 

2.1.1   Compiler Models 

As most programming languages are implemented by means of a com- 

piler,  it is attractive to obtain a semantic specification by simply formal- 

izing the process of compilation.   Perhaps the most articulate presentation 

of this position is due to J. Garwick.   He proposes,   [Gar66],  that the 

semantics of a programming language be defined by a standard compiler for 

that language.   The compiler is to be written in and produce object code for 

some standard  " machine-independent language " suitable for simulation on 

any normal computer.    The meaning of any program is defined to be the 

outcome of the simulator acting on the output of the standard compiler. 

The standard compiler would thus serve as an unambiguous definition, 

guaranteeing the existence of an effective procedure for obtaining the mean- 

ing of any program.    While the standard compiler would be made simple at 

the price of inefficiency,   it could serve as a standard for the development 

of better compilers.    A new compiler could be certified by running on it all 

the "fancy cases"   [sic]   much in the way an algorithm is certified. 

The key issue here is the perspicuity of the standard compiler.    Clearly, 

a precise definition of a language can be obtained by anointing at random a 

compiler for that language; precision is,  however,  not the only concern. 

For Garwick* s proposal to be non-trivial,  the standard compiler must 

serve as documentation as well as canonical implementation.    That is,  it 

would have to be so transparent that one could read it and understand its 
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Operation without resort to a computing machine.   While Garwick suggests 

that this could be achieved by sacrificing efficiency,   he presents no example 

to support the contention.   Indeed,  it seems unlikely that examples can be 

found.   The difficulty of communicating an algorithm in maphine language 

was one of the motivations for high level languages.   As a compiler is gener- 

ally several orders of magnitude more complex than a single algorithm, 

machine language would hardly appear to serve as an appropriate vehicle 

for its communication. 

Having appealed to the utility of high level languages,  we are invited to 

investigate whether their substitution for machine language would make 

Garwick's proposal tractible.   We consider one of several efforts made 

along these lines — FSL [Feld66] — choosing it over others because it was 

designed specifically as a formal semantic language. 

The underlying compiler model used by FSL is a standard on-the-fly 

code generation scheme (c.f. [Chea67] for a complete discussion of such 

techniques).   Syntactic analysis is performed by Floyd-Evans productions 

(c.f. [Chea67]) which are usually used to produce a canonical parse,  but 

which can in principle allow greater generality.   Each reduction may option- 

ally call upon a semantic routine written in FSL;  the actions carried out by 

these routines define the meaning of the program.   Semantic routines can 

generate code and/or change the state of the compiler. 

Code generation is performed by calls upon abstract code operators, 

e.g., JUMP, PLUS, MULTIPLY, ASSIGN. The actual generation of code 

corresponding to the abstract operators is performed by system-defined, 

'Subsequent to theoretical design,  it was implemented in a translator 
writing system,  and later expanded in VITAL [Mond67]   which was used 
for the implementation of LEAP  [Rovn68]  as well as Algol 60. 
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machine-dependent code generation routines whose operation is below the 

level of discourse in FSL.    Hence,  the problem of code generation is neatly 

side-stepped in the formal semantic specification.    Since code generation is 

generally messy but semantically tractable,  it may be properly regarded as 

a subsidiary issue; its removal from the semantic model is a useful orthogo- 

nalization.    Further,  by using abstract code operators,   FSL. avoids commit- 

ment to a particular machine,  or even a particular machine organization. 

Hence,  the formal definition specifies semantics precisely without making 

commitments which might result in pragmatic inefficiency. 

Changes to the state of the compiler include testing and updating tables, 

manipulating stacks,  and operating on compile-time variables.   FSL is 

itself a fairly complete programming language and contains Booleans and 

Boolean operations,  conditionals,  assignments,  and procedure calls.   In 

addition,  there are a number of builtin functions which abstract situations 

occurring frequently in compiling; for example,  a floating address notation 

is provided to handle forward reference such as jumps to program locations 

not yet determined. 

One objection to this approach is based on the complexity of the formal 

semantic language.   Its purely algorithmic capabilities are not much weaker 

than Algol 60;  as these are augmented by special builtin functions,  the com- 

plete language FSL is more in need of semantic explication than most of 

the languages it has been used to define.   Such objections could,  in principle, 

be met by defining the FSL language in FSL (c.f. §4.2).   Alternatively,  a 

somewhat simpler semantic language could be used with little loss of de- 

scriptive power,   provided that a careful choice is made.   For example, 

Wirth and Weber give a formal definition of EULER  [Wir66]  in which the 

semantic actions are specified in an "elementary notation for algorithms", 

a language far simpler than FSL. 
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A more serious objection applies to compiler models for semantics 

as a genre.    Wegner [Wegn69]  has observed that compiler based models rely- 

on the supposedly understood semantics of the target machine; hence, they 

are "analogous to the solution of a mathematical problem by reducing it to 

a second problem with known solution."   The difficulty with this approach, 

Wegner observes,  is that it often fails to directly explicate the essential 

nature of the problem being solved.   Specifically, the trouble with compiler 

models is that semantics gets distributed in this two-stage process so that 

the one-to-one correspondence between structure and meaning is lost.   To 

understand the semantics of a language construct,  it is necessary to under- 

stand not only the semantic actions which specify code for that construct 

but also the environment in which that code will run.   As this environment 

does not exist at the time the semantic actions are taken,  it must be 

mentally preconstructed from an understanding of the other actions taken 

by the compiler and an understanding of the behavior of the program. 

Further,   some of the relevant compiler actions do not occur until after the 

processing of the construct in question.   This diffusion of semantics runs 

precisely counter to the goals of understanding,  analysis,  and communi- 

cation.   To be acceptable,  a semantic formalism must orthogonalize,  not 

commingle meaning.   Hence,  despite their initial attractiveness, the com- 

piler models prove somewhat unsatisfactory. 

The efforts at producing a more direct explication are divided into two 

camps,  depending on whether or not the X-calculus is taken to be the canoni- 

cal form for exegesis. In either camp,  most models use an interpreter of 

some sort. 
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2.1. 2 A-Calculus Models 

Ina series of overlapping papers,  [Land64],  [Land65],  [ Land66a],  and 

[Land66c],   P.   Landin has explored the application of the A-calculus to the 

analysis and explication of programming language semantics.    This work 

comprises a number of distinct but complementary themes: 

(1) demonstrating how certain constructs in programming languages (e.g., 

auxiliary definitions,  parameter bindings,  recursive function    defi- 

nitions) can be modeled in the X-calculus, 

(2) specifying the evaluation of ^-expressions by a mechanical procedure 

which operates by state transitions in the spirit of automata, 

(3) demonstrating how the K-calculus can be syntactically enriched so that 

it has the appearance of a simple programming language (named "AE"), 

and semantic ally augmented to obtain a more general programming 

language (named "IAE"), 

(4) specifying a formal definition of Algol 60 semantics by a function which 

maps Algol 60 into IAE. 

As an illustration of the modeling technique,  consider the following 

fragment in some hypothetical programming language 

let u   ■   2p + q; 

and v   =   p - 2q; 
2 

and f(x)   =   sin(5x   + 3x) ; 

f(u) + f(v) ; 

This may be translated into the equivalent X-expression 

[X(u,v,f).f(u)+f(v)] (2p + q,   p-2q,   X(x) . sin(5x2 + 3x)) 

In general,  mappings of this sort can be specified by a set of transformation 

rules; the two employed in this translation are 
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(1) and (variable).. (( variable)«) = (expression) 

and (variable)1 = X((variable)«) . (expression) 

(2) let (variable).. = (expression) • 

{and (variable). = (expression).;}' (expression), ; 

interest to the 

[X( (variable).. { , (variable).}' ) . (expression),  ] 

((expression). { ,  (expression).}' ) 

Other forms,  notably recursive procedure definitions can be modeled in 

similar fashion.' 

The mechanical evaluation of X-expressions is of little 

present discussion except in that it illustrates the technique of defining a 

language by means of its interpreter.   However,  what is of interest is 

topic 4:   Landin's semantic specification of Algol 60.   Since the X-calculus 

is strictly applicative,  it models only with great difficulty certain impera- 

tive features of programming languages,  notably jumps and assignments. 

To handle these features,  Landin adds corresponding primitives to the 

X-calculus:   program points,  and assigners.   The resulting language he 

terms "IAE" (imperative applicative expressions).   The formal definition of 

IAE was to have been specified by a mechanical evaluator related to the 

evaluator for the pure X-calculus.   However,  to the best of our knowledge, 

this evaluator was never written.   This undercuts the model of Algol 60,  since 

the only semantic specification of IAE is a very short English language dis- 

cussion. 

' It should be pointed out that the transformation rules are ours,  not 
Landin's; his papers are expository and present the techniques by examples, 
not formal rules.    It should also be noted that the rules,  taken to trans- 
form in the reverse direction,  illustrate the technique of syntactically 
enriching the X-calculus so as to mimic the appearance of conventional 
programming languages. 
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Landin does define with some rigor an abstract form of Algol 60 and a 

function which maps abstract Algol into LAE.   The treatment of the Algol 

(for statement)  illustrates the general technique as well as a trait typical 

of Landin's approach:   whenever possible,  imperative constructs are recast 

into an applicative rendering.   In abstract Algol,  a forstatement is defined 

by 

a forstatement has 

a control which is a variable 

and a forlist which is a nonnull forlistelement-list 

and a body which is a labeled statement 

where "variable",   "forlistelement-list",  and "statement" are similarly 

defined.   The mapping rule for an abstract forstatement is given by a 

function written in the language AE,  which it will be recalled is a para- 

phrase of the \-calculus: 

nforstatementNS   = 

let  D  ,   D,  X   =   nlabeledfnstatementN'I'HbodyS) 

(Do< 
parallel ( ) , 

combinelist (! for ' , 

(nlhsN (controls) ; 

combinelist (' concatenate* ' , 

map (nforlistelementN) (forlistS)), 

arrangeaspseudoblock(D, X))) 

where "bodyS",  "controls",  and "forlistS" refer to the parts of the 

forstatement and the various functions such as "parallel",  "combinelist", 

"map",  and "arrangeaspseudoblock" are specified by similar definitions. 
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This mapping rule compiles a call on the IAE function for* with three argu- 

ments: 

(1) the controlled variable, 

(2) a special function,  called a stream,  which steps through the forlist, 

(3) the body to be executed on each iteration. 

Finally,  for* is a function defined in IAE as follows: 

recursive for* (v, S, B)   =   if -I null S( ) then 

[v := hS( ); B;  for* (v, tS( ),B ) ] 

This definition should be moderately clear once it is explained that S is a 

null-adic stream function which models an Algol (for list)  in the following 

sense.   When S is called,  it produces either NIL or a list of two elements: 

(1) the first (for element)  specified in the Algol program,  (2) a function 

which models,   in the same sense as does S,  the rest of the (for list) .   The 

function for* tests to see if there is a next (for element) ;  if so,  it sets v 

to the next (for element) ,  executes the body B,  and calls itself recursively 

with a modified procedure for producing a (for list) . 

In comparing this definitional technique to the compiler-based models, 

several points should be noted.   The mapping (compiler if you will) from 

abstract Algol to IAE is expressed by a purely applicative function.   Hence, 

there are no side effects and the mapping process can be treated statically. 

The proponents of applicative programming argue that this greatly simpli- 

fies the mapping and makes it semantically acceptable.   Further,  since AE 

is rigorously equivalent to the \-calculus, the semantic metalanguage for 

the mapping phase is well-defined.   While it is true that AE is well-defined, 

it is not at all clear that its use actually simplifies the mapping.   If anything, 

it illustrates one difficulty with applicative programming:   notions which are 
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intuitively expressed by imperatives are tortuously twisted into applicatives. 

The same criticism applies to the IAE code which is generated by the map- 

ping.   Whereas machine code,  abstract or otherwise,  generated by the 

compiler-based models is fairly clear,  the IAE rendering of familiar 

Algol forms is often highly counter-intuitive.   The stream function used 

above is typical.   Other examples include the Algol conditional expression 

if   p   then   a   else   b 

which is represented by the IAE form 

if(p)     (X( ) . a,   \( ) . b)     ( ) 

Here,   if is a function-producing function defined 

if (true)   =   head 

if (false)   =   head tail 

where head and tail are the usual list operators.   Circumlocutions of this 

form are the rule rather than the exception in Landin's work,   suggesting 

that IAE is not really satisfactory as a target language for the explication 

of Algol or similar programming languages. 

Following Landin,   intellectually as well as chronologically,  there have 

been a number of other studies using the X-calculus to explicate features 

of programming languages,  e.g.,   [Mor68] .   However,  this work contains no 

significant advances;  it appears the \-calculus approach has run into a 

dead end. 

Turning,   however,  from explication to synthesis,   it is found that the 

\-calculus is a reasonable basis for a programming language.   That is,  one 

can take the \-calculus as a starting point and build languages around it. 

Since these languages tend to be dominated by their core,  they are often 

elegant and semantically tractible. 
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Lisp [McCar60] was the first programming language to take this path.' 

In so doing,   Lisp made two contributions to programming languages. 

(1) Its evaluation rules are particularly simple and uniform.   With only a 

few exceptions,  Lisp stands as a model for its lack of "funny" situations 

and special cases. 

(2) Because of this uniformity,  it was possible to give a precise specifi- 

cation of the evaluation process.   That this specification is written in Lisp 

makes it particularly elegant,  but this elegance is of secondary interest. 

The existence of a precise,  lucid semantic specification demonstrated that 

this goal was attainable and inspired attempts at duplication of this pre- 

cision and lucidity in the specification of other languages. 

The work on X-calculus models may be summarized as follows. 

(1) The X-calculus is a viable semantic tool for the applicative aspects of 

programming languages.   Almost all languages contain some applicative 

facets such as parameter binding,   scope rules,  function definition,  function- 

producing functions,  and the like.   The semantics of these constructs can 

often be nicely analyzed and explicated in terms of the X-calculus. 

(2) Further,  it is possible to design languages whose applicative facets 

are based directly on the X-calculus.   Such languages can be particularly 

tractible. 

(3) The X-calculus can be used to model some imperative aspects of pro- 

gramming by recasting imperative notions into applicative oi >nesj     Less 

'Subsequently,   several other languages were so designed,  notably ISWIM 
[Land66b] and its descendent PAL [Evans68]. 

"*^Indeed,   since the X-calculus is effectively equivalent to a universal 
Turing machine,  it is not difficult to show that any imperative notion can 
be recast into some weakly equivalent applicative notion. 
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mutable imperative aspects can be handled by a formalism in which the 

\-calculus is augmented by the ad hoc addition of a few imperative features. 

(4)    However,  the models which result from (3) are at best questionable 

and often useless. 

2.1.3   Interpreter Models 

Granting the conclusions of section 2.1.2,  a number of researchers 

have sought other schema whose primitives (or axioms,  if you will) more 

properly reflect the behavior of computers and programming languages. 

Notably,  these include assignment.   While this carries the formal theory 

outside the province of classical mathematics,  work by J. McCarthy and 

his students has shown that such theories can be tractible.   In particular, 

an axiom set including assignment has been shown,   [Kapl68],  complete 

and consistent. 

Other than agreement on the need for assignment and hence explicit 

sequencing,  the resulting models bear little resemblance to one another. 

We shall consider three:   Van Wijngaarden's,  McCarthy's,  and ULD. 

The formal model of Van Wijngaarden was outlined in two papers 

[VanW63]  and  [VanW66]  and applied to the formal definition of Algol 60 by 

his student DeBakker  [DeBak67].   It starts with the observation that many 

constructs in high level languages, Algol being taken as a canonical ex- 

ample,  can be reduced to simpler ones either in that language or an allied 

language which does no violence to the original.   For example,  na[3, 2]" 

can be reduced to Ma[3] [2]n;   the conditional "a := if b then c  else d" can 

be reduced to  "if b then a :=c    else  a : = d";  the switch declaration 

"S : = SI, S2" is replaced by "procedure S(n); if n = 1 then goto SI else goto S2M; 
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multiple labels are replaced by single labels,  and so on.   Such reductions 

are performed by a preprocessor.   The use of such reductions to simplify 

the language which must be formally defined is a powerful and widely 

applicable technique,  but not very profound. 

The substantive portion of Van Wijngaarden!s model is the processor 

which accepts the preprocessed text,  scans and modifies it repeatedly, 

producing at each step the value of the text.   "This value is a text which 

changes continuously during the process of reading and intermediary stages 

are just as important to know as the final value" [VanW63].   Stated more 

precisely,  the input to the processor is a string consisting of the special 

operator value, followed by the preprocessed source text,  followed by a 

set of rules which define the language in which the source text is written. 

The processor is an interpreter,  table-driven by the language rules. 

These rules,  which Van Wijngaarden terms "truths" are written in the 

metalanguage and fall into two classes: 

(1) syntax rules,   such as 

(identifier)  in (simple variable) 

where "in" may be read as "is an element of the set" 

(2) semantic evaluation rules,  such as 

value {( sum l) + (term l)} = 

value {value ( sum l) + value (term l)} 

which may be read roughly as:   to obtain the value of the addition of a 

( sum l) and a (term l) begin by obtaining the value of the operands. 

It is interpreted as:   if the string or a substring has the format speci- 

fied by the left-hand side of the rule,  replace it by the right-hand side 

of the rule,  with appropriate handling of formal parameters. 
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The preprocessed source text,  indeed any construction in the source 

language,  is said to be a "name".   The value of a name is obtained by con- 

sulting the list of evaluation rules until an applicable'  evaluation rule is 

found and applying it,  producing a new text.   If the operator value appears 

in this text,  the process repeats.   The process of finding an applicable rule 

and applying it,  of course,  invokes a complex string scanning algorithm. 

The crux of this method is that the execution of an evaluation rule can 

add new evaluation rules to the text.   Since the source text acts as data and 

the language rules act as program of the  processor,  this scheme uses a 

program which grows as it runs.   For example,  assignment statements are 

handled by the semantic rule 

value {(variable l) := (expression l)} = 

{(variable l)   =   value (expression l)} 

Hence,  upon encountering a text containing 

a   :=   3 + 4 

the processor replaces this fragment by 

a   =   value { 3 + 4} 

and,   since the semantic rules include those for integer addition,  ultimately 

by 

a   =   7 

Note the change from the operator ":=" which is an operator of the source 

language to the operator "=" which signifies an evaluation rule in the meta- 

language.   Subsequent references in the source text to "a",   such as "a+b", 

will make use of this new truth in obtaining its value. 

^The applicability of an evaluation rule is determined by the syntax rules 
which test for set membership. 
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There turns out to be one central difficulty with this proposal.   The 

recording of all values as "truths" in a single string is perhaps elegant, 

but far too simple-minded to serve as a good representation.   The lack of 

organization and the incredibly recursive fashion in which applicability of 

rules must be determined renders even the simplest example so unwieldy 

as to be incomprehensible.   Also, because the representation is clumsy, 

the semantic metalanguage becomes quite complex,  for the process of con- 

sulting "truths" requires an involved pattern match.   Finally,  the poor 

representation forces the language definitions to be needlessly complex and 

anything but transparent.   Van Wijngaarden's method amounts to definition 

by Markov algorithm.   It should,  however,  be clear that string processing 

is a poor representation of program evaluation.   What is required is a 

representation which exploits the structure of source programs. 

McCarthy,   [McCar62]  and  [McCar66],   in taking this position introduced 

the notion of an abstract syntax.   This he defined as a set of predicates each 

true of objects in its characteristic syntactic class (e.g.,  isterm(t) is true 

only of (term)s) and selectors which given an appropriate syntactic con- 

struct select out one of its parts (e.g.,  forlist(t) selects the (forlist)  out of 

an ( iteration statement) .   The predicates and selectors are defined 

recursively.   For example,  consider 

isterm(t)   =   isvar(t)  V isconst(t)   V (issum(t) A isterm(addend(t)) 

A isterm (augend(t))) 

which corresponds to the BNF 

(term)   ::=   (var) | ( const) | (term) + (term) 

The use of such an abstract syntax is effectively equivalent to using a BNF 

syntax and having a parse tree of the source text,  with the additional benefit 
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that alternative right-hand sides are given names. 

To discuss the semantics of a language,  McCarthy uses a state vector 

£,  defined at any given time to be the set of current assignments of values 

to variables of the program.   Two primitive functions "a" and "c" access 

the value of a variable in £,  and map a state onto a new state with changed 

value for one of its variables.   The result of executing a program w with 

initial state vector ? in language £ is defined to be a new state vector 

5' = Z(ir, 5) where £ is the semantic function of £.    £ acts as an interpreter 

of the program ir,  using selectors and predicates to decompose n,  using its 

sequencing rules to sequence through w,  and using state vectors 

5,  ?j,  ?o'   • •''  ^' to recorc* tne values of variables in n. 

McCarthy applies this technique to the specification of a very restricted 

subset of Algol 60,  called "Micro Algol".   For this simple language,  £ can 

be specified very neatly as a simple recursive function.   The elegance of 

this specification is due in part to the simplicity of Micro Algol.   In particu- 

lar, the language has no block structure so that (1) the set of variables com- 

prising £. is constant and (2) control can be represented by a single state- 

ment number. 

However, the McCarthy formalism does contain several significant 

techniques.   A state vector has an intuitive appeal and far better models 

the variables of a programming language than a sub-string of 

Van Wijngaarden's "truths".   Dealing with abstract syntax neatly dodges such 

issues as written representation of the language and parsing,  which are 

thorny but peripheral problems.   Also,  abstract syntax can be used to bypass 

much of the preprocessing actions required by other representations,   so 

that specification is that much more direct.   Finally,  the use of a program- 

ming language to express the semantic interpreter invites the development 

of a problem-oriented metalanguage tailored to such expression. 
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2.1.4   Interpreter Models Continued:   The Vienna School 

The most extensive attempt at developing such a language was carried 

out by the Vienna Laboratories of IBM in the course of creating a formal 

definition of PL/l.   This description [Alb68a],   [Alb68b],   [Fle68],   [Luc68a], 

and [Walk68],  was    a major development effort within IBM to prepare a 

completely formal description of PL/l including both formal syntax and 

semantics" [Nich68].   There is no doubt that the work is a major effort: 

the formal specification runs to nearly 1000 pages plus several volumes 

of informal,  explanatory discussion. 

The method and metalanguage^ developed for this task are perhaps the 

most significant body of work to date in the field of formal language speci- 

fication.   Since a complete formal specification of PL/l has been written in 

it, there is empirical evidence that it can be used in a large-scale effort. 

Further,  in the absence of any other fully developed model,  it may become 

a de facto standard.   In the past year,  ULD has been used ([Ger70],  [Lee69] 

[Rey69]) for the formal definition of at least three languages in projects 

unconnected with the IBM/ULD effort. 

The ULD authors distinguish [Luc68b]  three components character- 

izing a formal definition model:   (1) the base,  (2) the design,  (3) the meta- 

language.   We shall adopt this tripartition in examining ULD. 

The base is a modification of the technique used by Landin in describ- 

ing a mechanical evaluator for the \-calculus (c.f. §2.1.2) .   An abstract 

machine for some language £ is defined by its two components: 

'We will use the term ULD to refer to both the method and metalanguage; 
context will distinguish between the two. 
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(1)    a set of machine states ?., 

(2)    a state transition function A. 

For any source program & written in £,  there is some initial state £    which 

properly represents 0*.   Application of the state transition function A to a 

state ?. yields a set of possible successor states.   That is,  in general,  A is 

trees with named components — to represent the machine states.   The com- 

ponents of a state include its storage,  its environment,  the text being 

interpreted with its statement counter,  various directories for variables, 

and the control.   The components of control are a set of instruction names 

which refer to instruction definitions.   In a state ?,  any instruction in the 

control is a candidate for execution.   Hence,   A(?) is defined to be 

{^-  (?) | <//•    is an instruction in the control of ? } 

An instruction may return a value,  modify and in particular add to the control, 

or change any part of the state.   As the computation progresses,  program 

constructs are moved from the text into control,  ultimately producing a 

result which is reflected in a change to storage. 

The underlying metalanguage is a melange of the pro positional calculus, 

conditional expressions,  arithmetic operations,  functional composition,  and 

two special operators which manipulate structured objects (a selector and a 

constructor).   Of greater interest to this study is the notation in which 

instruction definitions are written, the semantic metalanguage.   This con- 

sists of the underlying metalanguage augmented by a number of special 
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nondeterministic so that a computation is defined to be a sequence of states 

€  ,  ?IJ  ?9,   ..«,  ?•;   •••   suchthat?.,-  e A(?.).   (If different computations on 
O 1 — 1 1"T*1 1 

the same program produce different results then the value of the program is 

undefined.) 

The design of ULD centers around the use of structured objects — finite 



notations ("paraphrase extensions" in our terminology) intended to facilitate 

the writing of instructions.   Of particular importance is a set of special 

forms for manipulation of the state components. 

A number of criticisms can be leveled at ULD.   The restriction of 

structured objects to trees and hence the prohibition against sharing com- 

ponents is needlessly constrictive.   It rules out explicit and natural repre- 

sentation of sharing,  which is a basic notation in programming,  and forces 

the use of clumsy substitutes.   Also, the semantic metalanguage is not well- 

chosen,  particularly in regard to its syntax.   While it uses most of the 

familiar concepts of programming (e.g.,  conditionals,   sequencing,  assign- 

ment of results to objects,  procedures,  and procedure calls),  it presents 

these familiar concepts in strange guises and represents them in perversely 

nonstandard notation.   Further, there are a number of restrictions in the 

language which make it awkward to specify changes to the state (c.f. [Lee69]). 

However, as a number of researchers have independently chosen to use 

it for the description of quite different languages (PL/I, APL,  BASIC,  and 

an experimental language designed by Reynolds),  there is good reason to 

believe it has considerable merit.   It would seem that the weakness of the 

PL/I formal definition project was not ULD but the project goals.   The 

immense complexity of the formal definition is attributable to the complex- 

ity of PL /I, not to defects in the metalanguage. 

2.1.5   Assessment 

Considering the various models which have been proposed for the 

semantic specification of programming languages,  the most striking charac- 

teristic is the diversity of formalisms which have been used as bases.   The 

elementary theory of computability demonstrates the equivalence of such 
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dissimilar formalisms as Turing machines,  Markov algorithms,  canonical 

systems,  and the X-calculus.   Empirical observation discloses that almost 

all have been used as the basis for some exercise in semantic specification 

of programming languages.   That is, these devices not only have the same 

computational power but they can all be used to represent the meaning of 

similar languages.     On the  one  hand,  this lends a certain credence to the 

you-can-do-anything-on-a-Turing-machine school;  on the other,  it displays 

the school's essential weakness:   the high anguish factor. 

The primary requirement imposed on a semantic specification is that 

it describes the meaning of language constructs precisely and clearly.   It 

is easy,  unfortunately too easy,  to find a formalism in which the semantics 

of programming languages can somehow be represented and specified 

precisely.   Precision is not the issue,  nor is computational power.   The 

real issue is effective representation;  i.e.,  choosing a representation 

which minimizes the anguish factor.   We require representations which 

preserve intuitive notions of structure and meaning so that formal specifi- 

cation is direct and clear.   Failure to achieve such representation inevitably 

leads to a useless excursion in the Turing tar pits. 

Using the criterion of effective representation, the models based on 

formalisms such as the X-calculus and Markov algorithms fare poorly. 

While the bases are simple,  rigorous,  and tractable, they provide a poor 

representation of simple concepts in programming.   In general,  attempts 

to apply existing formalisms,  developed for other purposes,  to semantic 

specification is a misplaced effort;  while they may be useful in analyses 

or exegesis of certain portions of a language,  they break down when the 

burden of a complete description is placed upon them. 
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In short, there is a very wide latitude in the possible formalisms on 

which a semantic specification can be based.   There is a certain temptation 

to attempt adaptation and utilization of a classical mathematical basis. 

However, this temptation must be resisted.   If a direct and clear definition 

is to be obtained,  a formal basis should be chosen whose primitives have 

an intuitive content in terms of the primitives of programming and,  con- 

versely,  which abstract the primitives of programming. 

The second issue which emerges from this study may be stated as: 

description vs. design.   As noted in the introduction,  an ad hoc inhomoge- 

nous language will inevitably imply a clumsy,   inhomogenous specification. 

Regardless of the elegance and power of the metalanguage employed,  the 

specification in that metalanguage must explicate every wart of the language. 

Well-chosen notation can occasionally obscure these blemishes,  but hiding 

them completely is impossible.   When the language becomes large,  design 

errors grow from warts to humps and the formal semantic specification 

becomes a 1000-page monstrosity.   For this reason,  it is often a misplaced 

effort to attempt the a posteriori formal semantic specification of an exist- 

ing,  fixed language.   Frequently,  the only consequence of such work is to 

bring into sharp focus language defects. 

Such observations inspire the alternative approach: Using the semantic 

specification a priori, in the design phase. The specification changes roles 

from an after-the-fact description to a notational tool in which to formulate, 

express,  judge,  and thereby improve the design.   The benefits of a fluent 

t 

'For example,  De Bakker in discussing his model [DeBak67] observes that 
"several aspects of the semantics of ALGOL 60,  which are of no essential 
importance,  have complicated and lengthened the definition  .   .   .  consider- 
ably." 
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notation to the design process should be obvious.   Further,  the elegance and 

efficiency with which a language feature can be formally expressed becomes 

a key criterion in judging its worth.   In consequence,   it is to be expected 

that languages so designed will not only be more homogenous,  and hence 

easier to learn and use,  but will exploit more completely their own mecha- 

nisms and potential linguistic power. 

One final point should be noted.   While the disadvantage of two-stage 

explication was observed in connection with compiler models,  the difficulties 

are not confined to compilers.   Quite the same objection may be raised 

against Landin's definition of Algol 60 semantics by means of a translator 

into IAE.   It is less the nature of the target language that causes difficulties 

than that there is any target language at all.   Semantic models which deliver 

a second program to be run in a separate phase do not give a direct 

description of meaning.   For this reason,  one-stage,  interpreter-based 

models tend to be far more satisfactory. 

2.2   EXTENSIBLE  PROGRAMMING  LANGUAGES 

In the few years since its origin,  the field of extensible programming 

languages has seen an astonishing growth.   This is due in part to the 

obvious utility of a complete working extensible language,   in part to the 

insight such research yields concerning the foundations of programming 

languages,  and in part to a tantalizing air of universality which pervades 

the concept.'    Also,  a substantial part of this growth can be attributed to 

'The well-trained ear will detect the siren song of UNCOL in the back- 
ground. 
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a bandwagon effect:   work which several years ago would have been cate- 

gorized as being in the field of translator writing systems is now adver- 

tized as extensible language research,  with suitable shifts in emphasis. 

Finally, the notion of extensible languages appears to be an idea whose 

time is becoming ripe.   We know how to build far better languages than 

those currently available.   For various reasons, utilization of this know- 

ledge is being channeled primarily into extensible programming languages. 

Hence,  there is considerable internal pressure to produce extensible 

languages. 

Regardless of cause,  the field is overgrown with vegetation.   A list of 

languages claiming to be extensible and proposals for such languages 

includes [Abr66] ,   [Bell68] ,  [Ben68] ,  [Chea66] ,  [Earl69] ,  [Gal67] , 

[Gar67],   [Har69] ,  [Irons68] ,   [Jorr69],   [Kay68] ,  [Leav66],  [MacLar69] , 

[McKe66],   [Mills68] ,  [New68] ,  [01yn69] ,  [Stand68] ,   [vanW69].   The very 

number of such proposals would alone preclude any but a trivial exami- 

nation of them all in the scope of this work.   However, their number is not 

the only obstacle to a complete review.   Many of the above proposals are 

incomplete.   For example,   some present a scheme by means of examples 

without ever supplying the requisite detail; an assessment must guess at 

how the general case is treated and how the scheme is to be implemented. 

Others,  while more detailed,  attack only one small facet of extensibility, 

leaving in doubt whether such an approach can be integrated into a pro- 

gramming language.T   Still others,  while complete programming languages, 

^To appreciate the importance of such integration,   it should be recalled 
that the messy parts of implementing Algol 60 arose from the interaction 
of different facets [McCar69].   Two or more features,  proposed by differ- 
ent designers,  each had a straightforward implementation; their union did 
not. 
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are either unimplemented or incompletely documented,  making it impossi- 

ble to assess their practicability.   In short, for most of these proposals a 

critical review could not be sufficiently deep to justify its existence. 

Instead of treating all the above projects in a brief and shallow fashion, 

we shall concentrate on two of them chosen to illustrate significant aspects 

of the field.   Each marks the state of the art in one or more types of 

extensibility.   Further,  each is a complete language,   so it is possible to 

examine how the extension mechanisms are embedded in a programming 

language.   Finally,  each takes implementation seriously:   either a working 

implementation exists or an implementation is in progress. 

For those many proposals this treatment omits,  we refer the reader 

to a survey paper by S. Gerhardt [Ger69] and to the proceedings of an 

extensible languages symposium [Chris69] held in May,   1969. 

2.2.1   IMP 

Perhaps the most obvious type of extension is syntactic.    For various 

applications areas,  an almost endless number of syntactic forms can be 

profitably added to a language to allow succinct expression of common 

forms used in these areas.   The point of an extensible language is,  of 

course,  that not all syntactic forms need be in the language at any given 

time.   Assuming that the language's syntax is specified by a set of context- 

free productions,  the syntax can be extended by the addition of new pro- 

ductions.   If the parse algorithm for the language is syntax-directed and 

accepts' the new productions,  then the parser is correspondingly extended. 

'It should be noted that some syntax-directed analyzers work correctly on 
only some subset of the context-free grammars.   In such cases,  an 
extension is implementable only if its productions adjoined to the existing 
set are acceptable to the analyzer.   Our experience with several  such 
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This sort of syntactic extension is provided in the  programming 

language IMP,  together with a sophisticated   facility for specifying the 

meaning of such extensions. 

IMP  [Irons68],  [Irons70]   is an extensible programming language 

designed by E. Irons which has been in practical,  real-world use since 

1967.   It is atypical among extensible languages in that its intended domain 

is system programming,  primarily on a CDC 6600.   Indeed,   its chief appli- 

cations to date have been the writing of the IDA-CRD'  time-sharing system 

and several versions of the IMP compiler.   In several respects,  it is 

specifically designed for this purpose.   Operations in the language include 

machine code,  depend heavily upon word length,  and deal with such matters 

as register allocation.   Hence,  IMP operates at a much lower level than 

most "high-level" programming languages and is by no means machine- 

independent.   However,  while these characteristics limit the exportability 

of the language, they are largely orthogonal to the extension mechanism. 

Our concern is with the latter. 

The compiler system used for implementing IMP is a development of 

Irons1 syntax-directed compiler for Algol 60 [Irons61]. It is on this com- 

piler system that the syntax extension mechanism is based. To compile a 

program, the source text is first parsed,  using a refinement of the algorithm 

analyzers suggests that most grammar restrictions will prove unaccept- 
ably annoying to the programmer.   The rewriting of productions into 
acceptable form is difficult,  tedious,  and tends to obscure the structure 
of the grammar.   Hence,  an analyzer which works on unrestricted or very 
nearly unrestricted context-free grammars is required.   The analyzer 
used in IMP is nearly unrestricted and appears to work very well in this 
regard. 

t Institute for Defense Analysis,  Communications Researc i  Division, 
located in Princeton,  New Jersey. 
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described in [Irons63].   The result of the first step is the generation tree 

of the program. 

Associated with each syntax production,  whether basic or programmer- 

defined,  is a set of semantic actions which define the meaning of that syn- 

tactic unit.   Subsequent to parsing,  the generation tree is repeatedly 

traversed (order being top-to-bottom,  left-to-right) as many times as 

desired;  the successive traverses are designated times 2,  4,  6,   .   .   .   . 

For each syntactic unit of the generation tree,  actions associated with the 

corresponding syntax rule are performed at the time specified for that 

action. 

To take a very simple example,  consider the definition of an assign- 

ment form which switches the values of two variables.   The syntax is 

given^ by 

(expression)   ::=   (name)     *-»•   (name), 

which states that an (expression) may have the format "(name) «•—+ (name)". 

The role of the subscripts "a" and "b" will be clear momentarily.   Suffixed 

to this syntax rule is the semantic specification 

means at time 2 

' begin local t;t   :=a;a   :=b;b   :=t      end ' 

This states that at time 2 (first tree walk) an (expression) of the form 

(name)  «•—•- (name)  is to be replaced by the parse tree for the text enclosed 

'The notation used in IMP is based on the small character set used in its 
implementation and is somewhat awkward.   For the purpose of exposition, 
we have modified Irons' notation to make it more suggestive of Algol 60. 
Irons would write 

EXPR   ::   (A , NAME)   ~   (B , NAME) 
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in single quotation marks,  where "a" and "b" are to be replaced by the 

first and second (name)s found in the source program.   In general,   sub- 

scripting a syntactic type with an identifier in the right-hand side of a 

production establishes that identifier to be a formal parameter of the 

production.    The quoted text may be any legal expression in the IMP 

language.   The above text should be clear once it is explained that "local t" 

establishes that t  is a full-word variable local to the begi in-end block. 

As a minor digression,   it should be pointed out that IMP allows 

simple extensions to be simply specified by allowing certain information 

to be omitted.   In such cases,  IMP automatically supplies a reasonable 

default value.   For example, the time specification may be absent and will 

then be taken to be time 2.   Similarly,   in the syntax portion of a rule, the 

left-hand side may be absent and is then given default value (expression). 

Hence, the same effect as given by the above example can be obtained by 

writing 

(name) (name),    means a -'b 
1 begin local t;    t:=a;a:=b;b:=t end * 

In general,  wherever the system can make an intelligent guess as to the 

value of a field, that field is optional.   This makes it easy for program- 

mers of varying degrees of sophistication to use the extension facilities; 

the more a programmer knows about the facilities, the more power is 

available to him. 

The above example is a case of macro processing in the classic sense, 

upgraded and applied to high-level languages with syntactic types.   Such 

macro extensions are just like procedure calls in Algol 60 except that the 

syntax of procedure calls is fixed while each production may,   in general, 

have a different syntactic shape.   Note that the macro extension is 
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characterized by its simple substitution of actuals for formals in the 

semantic routine,  not by in-line expansion of code.   The choice between 

in-line code and common subroutine is an implementation issue. 

To give this discussion proper perspective,  it must be immediately 

emphasized that macro extensions are but the simplest type of semantic 

specification provided in IMP.   Irons argues [Irons70] that while neces- 

sary,   it is by no means sufficient; the macro type of extension is only the 

beginning of a complete system. 

Without embellishment,   . . . this description method admits only a 

very limited treatment of semantics.   ...  In various efforts to over- 

come the deficiencies of the simple macro process for semantics, 

additional embellishments of varying complexity have been proposed 

for the semantic portions of extensions such as those of IMP.   The 
author1 s experience with some of these experiments in specification 
finally led him to the conclusion that nothing short of a general pro- 

gramming language capable of operating on syntactic and semantic 

structures would be adequate to express even the moderately difficult 
concepts required in the translation process.   The realization  of this 
in IMP is to consider that the semantic part of an extension is in fact 
not a macro shell but a computation which is evaluated as part of the 
translation process.   The computation could be expressed in any 
suitable language,  but for economy of notation,  IMP was chosen for 

this purpose. 

An example may make clear the notion of computing the semantics of 

an extension.   Consider defining a simple iteration form which proceeds 

from a lower limit to an upper limit in steps of 1.   Suppose we wish this 

loop expanded into straight line code whenever the number of iterations is 

a manifest constant and smaller than some compile-time variable   k. 
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(expression)   ::=   for (name).   *-   (expression),  to (expression)    do 

(expression). 'body 

means at time  2 

if   constant(i)  A constant(u) A convert(u) - convert(i) 

then   expand (body, i,i,u) 

else   ! begin local tag;    i — SL 

tag :  body; 

if   i * u then begin i *• i +1; go to tag 

end ' 

< k 

end 

if the form is a 

which returns 

The semantic specification tests at compile-time to see j 

candidate for expansion. If so, it calls a function expand 

the form 

1 begin i *- JL; body;  i — I +1; body ;   . . . i *- u ;  body end ! 

where the number of instances of body is u - i + 1.   If,  however, the form 

cannot be expanded (say,  because the upper limit is not a constant) then 

the semantic specification produces a block containing the appropriate loop. 

In general, the semantic actions associated with a production can 

invoke arbitrary compile-time computation.   Since these computations have 

access to the entire compiler mechanism,  any extension whatever is 

possible.   The real issues are the ease with which extensions can be made, 

the clarity of their specification,  and the degree of implementation inde- 

pendence.   What is required is an interesting class of compile-time actions 

which are more sophisticated than macro semantics but which do not 

require a detailed knowledge of the compiler for their specification. 

IMP goes some distance in providing such a class of actions.  Pattern- 

matching operations which acton trees are provided, so that it is possible to 
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easily discriminate sub-cases of a syntactic construct, e.g., for separate 

handling of special cases. Also, it is possible to associate data types with 

syntactic types in productions.   For example, the production 

(expression)   ::=   (expression) -.   r   (expression),    .   ,   means . . . 

will be applicable to a fragment of source program only if the first and 

second operands are of types real and int,  respectively.   This has two use- 

ful consequences.   Type information is brought into the semantics in an 

implementation-independent fashion; hence,  a change in such matters as 

table structure will not affect the validity of extension definitions.   Also, 

the syntax and data type specification are largely orthogonal,  keeping each 

small and simple. 

2.2.2   Algol 68 

The algorithmic language Algol 68 [vanW6 9],   [Lind69]   provides an 

instructive contrast to IMP.   Whereas IMP has well-developed facilities 

for syntax extension,  Algol 68 has only the weakest.   Whereas IMP gener- 

ally operates at a lower level than conventional algorithmic languages, 

dealing with machine words and admitting machine code,  Algol 68 is formu- 

lated in terms of a "hypothetical computer" which physical implementations 

may "model".   Further,  IMP is fairly simple and must be extended to 

obtain sophisticated forms,  whereas Algol 6 8 comes to the programmer as 

a fully developed (and in some respects unmodifiable) language.   Finally, 

IMP is generally weak in its provision for data types,  whereas data types, 

their definition,  and their interaction are among the chief concerns of 

Algol 68. 

Algol 68 employs three principal extension mechanisms:   builtin,  data 

type,  and operator.   We consider these in turn. 
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The builtin extensions are used to simplify the semantic specification 

of Algol 68.   Unlike IMP,  which is defined mechanically and rigorously by 

its syntactic/semantic productions, Algol 68 is defined by a written docu- 

ment,  Report on the Algorithmic Language Algol 68 [vanW69] .   To mini- 

mize the number of and keep orthogonal the primitive concepts,  an austere 

and somewhat unnatural language kernel,  termed the strict language,  is 

defined as being basic.   Its semantics are specified by a quasi-English 

description.   The Report then goes on to define an extended language in 

terms of the strict language. 

The strict language contains all semantic concepts; the extended 

1 

constructs and 

) abbreviate 

language allows convenient forms of paraphrase for many 

notions.   These paraphrases are designed principally to (* 

commonly occuring forms,  (2) make (extended) Algol 68 resemble the 

familiar Algol 60 as much as possible,  (3) enhance readability of code. 

For example, the strict language has no iteration statement; the extended 

language defines several iteration forms in terms of appropriate loops 

written in the strict language.   Similarly,  a case statement is absent in 

the strict language and defined in the extended language iq. terms of a 

strict language conditional.   Mimicking of Algol 60 occurs frequently; for 

example, the extended language declaration 

real x; 

may be used instead of the equivalent strict form 

ref real x   =   loc real; 

These builtin extensions differ from the extensions treated elsewhere 

in this paper in that the programmer has no hand in them.   They are 

strictly for the authors of the defining Report.   Hence,  as Algol 68 is 

currently constructed,  its builtin extensions properly fall outside the scope 
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of "extensions",  in the sense with which the term is generally used.   How- 

ever, there is a close relation.   To a large extent, the builtin extensions 

take the form of macro extensions as discussed in section 2.2.1.    With 

suitable additions to the language,  it would be possible to allow 

programmer-defined extensions having the same form as the builtin 

extensions now provided,   thereby obtaining a rudimentary facility for 

syntax extension. 

In Algol 68,  the notion of data type is denoted by the term "mode". 

Five modes are primitive:   bool (i.e., Boolean),  int (integer),  real 

(floatingpoint),  char (character),  and format (input/output format).   From 

these primitive modes,  other modes can be defined,  using five classes of 

formation rules: 

(1) definition of pointer (i.e.,  ref) types.   For example,  "ref real" is the 

mode of objects which can point to reals. 

(2) structures (i.e.,   structs) much like those of COBOL [COBOL61]  or 

PL/I [IBM66] .   For example, 

struct (real price ,  char code ,  ref int invoiceaddress) 

is the mode of structures having three components:    a real designated 

as "price",  a char designated "code",  and a ref int designated 

"invoiceaddress". 

(3) arrays of objects all the same mode.   For example, 

(a) "[1 : m,   1 : n]  real" is the mode of two-dimensional m by n 

arrays of reals. 

(b) "[1:0 flex]  char" is the mode of one-dimensional arrays of 

chars with lower bound 1 and upper bound flexible.   (That is, 

for such an object,   say x,  x[i] may be assigned for any 
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positive  i.   The system will insure,  e.g. by dynamic storage 

allocation,  that there is a storage location available.) 

(4) the union of other modes.   For example, 

union (int,  char ,  struct (real re ,  real im)) 

is the mode of objects which can vary between being jnts,  chars,  and 

struct (real re,  real im)'s. 

(5) the definition of procedure types.   For example, 

proc (real, union (int, char)) ref bool 

is the mode of procedures taking two arguments,  a real and either an 

int or a char,   and delivering a pointer to a bool. 

To be really useful, the creation of new modes implies the creation of 

operations which act on values of these modes.   Procedures can be defined 

as in Algol 60, but Algol 68 goes one step further and allows definition of 

new operators — uniary prefix and binary infix.   An operator is defined by 

specifying its symbol (e.g.,  +,  \,  abs),  its formal parameters with their 

types,  the mode of the result,  and a defining body like that of a procedure. 

In addition, a binary operator has   a priority number — an integer between 

zero and ten — which specifies its binding strength relative^ to other oper- 

ators.   Operators differ from procedures in that a given operator may 

simultaneously have many different definitions for different modes of 

formal parameters.   The compiler selects the appropriate definition based 

on the modes of the actual operands. 

The notion of mode in Algol 68 is subject to one important restriction: 

all transactions with modes are carried out at compile-time.   Hence, 

modes are not values which can be computed, but rather attributes which 

are processed statically.   This is,  of course,  a natural outgrowth of 
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Algol 60 and a plausible restriction if a compiler-based system is assumed. 

However,  it rules out certain generality in the language and imposes the 

restriction that all variability in data type be explicitly spelled out when 

the program is written.   We return to this issue in section 7.1.6. 
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Section 3.   INFORMAL  DESCRIPTION OF ELI 

It was concluded in section 2.1.5 that, for our purposes,  the semantics 

of a programming language is best specified by an interpreter model.   The 

interpreter takes as input a suitable representation of a program and pro- 

duces as output a suitable representation of the value of that program.   In 

carrying through this approach,  two major issues must be settled:   (1) how 

programs will be represented in the interpreter,  (2) in what language the 

interpreter will be written. 

It is our thesis that the defining interpreter should be written in the 

language being defined.' This implies that programs are to be represented 

as data objects in that language. If this language is extensible and has an 

adequate data type definition facility, the representation presents no 

problem: it is necessary only to define a set of data types which represent 

programs and their components. 

We have designed a language,  ELI,   intended to serve 

an extensible language and have specified its syntax in this manner.   In this 

section,  the language is discussed informally.   English description and 

numerous examples are used to give the reader sufficient fluency in ELI 

that he can read code.   In section 5,   a formal definition of ELI is given: 

its syntax in BNF and its semantics by an ELI interpreter, 

section serves both as an introduction to the language and as an explanation 

of the notation used in its formal definition. 

as the base for 

Hence,  this 

'It will be argued by some that the definition of a language by a program 
in that language constitutes a circularity which renders the definition use- 
less or logically invalid.   We contend that such arguments are wrong and 
address the issue in section 4.2. 
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Because it serves as an expository introduction,  this section 

does not attempt either formal precision or completeness.    Terms 

are occasionally used with only an informal definition,   or with 

merely an appeal to the reader' s intuition.    In all cases,   a pre- 

cise definition is given in the formal specification of section 5. 

As an aid to cross-referencing between the informal and formal 

specification,   subsection 3. i corresponds directly to 5. i for 

i= 2, 3,   . . . ,  12.    To keep this section from growing to unwieldly 

size,  the discussion is aimed almost exclusively at presenting 

the language,  not justifying it.    The rationale behind language 

features,   analysis of these features,   and comparison with other 

languages are carried out in section 7. 

We should,   at this point,   stress that ELI as it currently 

stands is only the base of an extensible language.    It is not of 

itself a complete language core.    For example,   it does not con- 

tain facilities for syntax extension.    Such facilities are well 

understood; their treatment here would diffuse and thus weaken 

this work.    In section 9,  we outline the additions which must be 

made to the present design to obtain a complete core. 
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3.1   INTRODUCTION  TO  KM 

Since KM  is clrtüßned as an extensible base it contains,   at least in 

germinal form,   most of Ihr notions round in standard programming 

languages.   In particular,   it draws upon Algol (SO |Naur(»3|,   Lisp 1.5 

|McCar(;2|.   and Algol OH |VanW(iO|.    Most of the concepts found in these 

three languages tire present in KM  — sometimes in changed notation, 

occasionally generalized,  often simplified.   JO LI is perhaps best introduced 

by comparison with these three existing languages. 

As in Algol (50,  variables in KM are declared to be of some data type.* 

A variable may be changed by assignment but is restricted to values of the 

declared type.   Operators and procedures take arguments of appropriate 

types and produce values of appropriate types.   The notation for assignment, 

infix operators,  and procedure calls is almost identical to that of Algol GO. 

A conditional is provided,  as is a form for iteration similar to the Algol 

( for statement) . 

From Lisp 1.5,  ELI borrows two principal notions.   (1) The syntax is 

particularly homogenous.   It is arranged so that almost every construct is 

of syntactic type form:   including   assignments,   procedure calls,  con- 

ditionals,  and expressions formed from infix operations.   Every form has a 

value.   With only a few exceptions,  any construct used anywhere in the 

The declaration of a variable in any programming languages may serve 
two distinct purposes: 
(1) specifying that the variable is local (as opposed to being a free variable), 
(2) specifying the data type of the variable. 
In a language which admits both local and free variables,  (1) is unavoidable. 
However,   if the language has the notion of a default data type,  (2) may be 
suppressed; it would be a simple extension to add this facility to ELI. 

163 



language may be replaced by a form having the same value.     (2) Storage 

allocation is not confined to a stack.   In Algol 60, the only classes of objects 

admitted in the language were those whose storage allocation could be held 

completely on a stack.  Lisp,  on the other hand,  deals with lists whose size 

may vary during execution.   Storage for these lists comes from a region, 

list-structure space,  out of which allocations are made at run-time — one 

block for each cons.   In contrast to Algol 60 variables, lists are not neces- 

sarily destroyed on the exit of the procedure in which they are created; 

hence,   storage blocks must be reclaimed by garbage collection.   ELI pro- 

vides for two classes of objects:   (1) those which behave like Algol 60 

objects and are implemented on a stack,  (2) those which behave like Lisp 

objects and are implemented by dynamic storage allocation with garbage 

collection. 

In this respect,  ELI is like Algol 68 which also has both stack and 

dynamic storage allocation.   It also resembles Algol 68 in another important 

feature:   the set of data types in the language is not fixed.   New data types, 

or modes,  can be defined in terms of existing modes using several builtin 

formation rules.   Once defined,  a new mode may be used exactly as if it 

were primitive, for example in declaring the data type of variables or in 

defining still other modes. 

One significant difference of ELI and Algol 68 is that in ELI modes are 

treated dynamically,  i.e., the definition of a new mode is an executable form, 

while in Algol 68 modes are treated statically.   (The ELI method is 

explained in section 3.9 and compared with that of Algol 68 in section 7.1.6). 

ELI differs from Algol 60,   Lisp 1.5,  and Algol 68 in a variety of other ways, 

principally in certain omissions made for the sake of simplicity.     For 

example,  ELI has the data type integer but not real.   It is not our contention 
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that the latter should be defined in terms of the former; tne widespread 

availability of floating point hardware dictates that reals be primitive. 

Rather,  we argue that explanation and description of the language is some- 

what simplified by its omission.   Reals can later be added to the language 

with no violence to its structure. 

3.2 CHARACTER SETS AND THE REFERENCE LANGUAGE 

Since this description makes extensive use of examples,  a note on 

character sets and written representation is in order.   Algol 60 distinguishes 

three different "levels of language":   a Reference Language,  a Publication 

Language,  and several Hardware Representations.   These define three 

classes of written representation for Algol 60 programs,  differing in charac- 

ter sets and related by simple transformations.'    ELI has two "levels" of 

language:   a reference language and several hardware representations. 

This paper uses the former.   It has been chosen for ease of writing, 

reading,  and typing.   Upper case letters replace the boldface letters of 

Algol 60;  for example:   FOR,  WHILE,  END,  and TRUE instead of for, 

while,  end,  and true.   Algol 60 has three fonts of the Roman alphabet — 

lower case boldface,  lower case normal,  and upper case normal — and 

reserves the boldface font for forming (basic  symbols) .   ELI  is 

restricted to two fonts — upper case and lower case — and uses upper case 

for its special symbols.   For example,  BEGIN is a delimiter while begin is 

'With few exceptions, the transformations may be carried out by simple 
finite state transducers. 
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a variable.    Where frequency of use warranted such addition,  the Algol (>() 

character set lias been supplemented to allow improved notation.   For 

example,  assignment is indicated by a left-pointing arrow (x *- y) instead 

of colon-equal (x : -= y).   However,   where there were no strong contrary con- 

siderations,   the notation used in Algol (>() lias been carried over.   For 

example,   Mf(x,y + 1)" is the application of procedure   f to the arguments  x 

and  y+ 1;   "d[i|" is the i      component of the object  d. 

Little will be said concerning hardware representations.   They are pro- 

vided as a concession to the possibility that a given implementation will not 

have available the full character set used in the reference language.    Most 

likely to be missing is a second alphabetic font or some of the special 

characters.    Any well-defined method which encodes the desired character set 

into the smaller one is acceptable.    For example,   special symbols such as 

BEGIN may be designated as reserved words.    Alternately,   special symbols 

may be written in some distinctive fashion,  e.g.,  BEGIN! ,    .BEGIN.,    or 

' BEGIN' .   Clearly,  such encodements will be somewhat annoying to use and 

will make code more difficult to read.   However,  these difficulties are the 

inevitable consequence of a restricted type font.   (The skeptical reader is 

invited to rewrite a paper in automata theory using a 48-character set.)   We 

believe that such considerations argue for expanded character sets on I/O 

devices.   The notion of hardware representation is but a makeshift arrange- 

ment to serve in the interim. 

3.3   PROGRAMS  AND  FORMS 

The basic unit in ELI is the form.   Forms include: 

(1)    constants such as 13 and TRUE, 
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(2) variables such as   x   and   pressure, 

(3) infix operations such as   x + y   and   i - j * k, 

(4) selection of part of a compound object such as b[i]  and   position!3* x) , 

(5) procedure calls such as   f(x)   and   foo(i, j+k, a[n]). 

A form is a syntacticly complete unit and has a value.   Forms may be put 

together in accord with the various composition rules of the language to 

obtain larger forms. 

A  program is simply a form which is not part of a larger form.   Other 

than this,   it is in no way special;  it is evaluated according to the same rules 

as any other form. 

3.4   CONSTANTS AND  BUILTIN  DATA TYPES 

ELI has ten builtin (i.e.,  predefined) data types:   Boolean,  integer, 

character,  mode,  ptr-any,   procedure,  none,  noneref,  symbol,  and stack. 

For each data type^ there are constant values of that type and builtin repre- 

sentations for these values.   The data type of all constants is manifest,   i.e., 

the data type of a constant can be determined uniquely from its written 

representation. 

Booleans and integers,  called bools and ints in ELI,  are similar to 

their counterparts in Algol 60.   The latter are identical in meaning and 

written representation to Algol 60 ( integer) s,  e.g.,   1,   -5,   1596,   6600. 

Booleans in ELI differ from those in Algol 60 only in their written repre- 

sentation:   TRUE  and FALSE  instead of true and false. 

'A single exception being the data type STACK;  constants of this type would 
be of little use - c.f. §3.16.3. 
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The set of characters defined in the reference language includes the ten 

digits,  an upper and lower case Latin alphabet,  and a number of special 

characters.   A character constant is represented by prefixing a single quote 

to a character.   For example,   the character B  is written ' B,  the character 

= is written  '=,  and the character ' is written  ' ' . 

ELI allows the definition of new data types or modes.   Hence,   it is 

necessary to deal with modes as values.   It will be recalled that the mode 

of 31 is int and the mode of TRUE is bool.   Similarly,  the mode of a data 

type is mode.   That is,   suppose the value of some form <F defines a new data 

type;  this value must have a mode.   It does:   the mode of  this value is mode. 

Of the ten builtin modes,   seven are primitive.    Each of these is denoted 

by a mode constant: INT,   BOOL,   CHAR,  NONE,   NONEREF,   PTR-ANY,   and 

STACK.1 

Having described the modes bool,   int,  char,  and mode we have enough 

data types to begin discussion of the language.   The remaining six modes 

will be discussed later when sufficient background has been developed to 

motivate their presentation. 

3.5   IDENTIFIERS AND  SIMPLE   DECLARATIONS 

An identifier is the name of a variable.   It will be recalled that a 

variable has a fixed mode which is determined by declaration.   Identifiers 

and the variables they name can come into existence in two ways:   as 

formal parameters or declared variables.   For brevity we here discuss 

'If this is unclear,  an analogy may be helpful.   TRUE is a Boolean constant; 
its mode is bool.   CHAR is a mode constant;  its mode is mode. 

168 



only the latter case.   Consider the ELI fragment 

DECL i, j, temp : INT ; 

This creates three variables named "i", "j11, and "temp" each having mode 

INT. (Recall that INT is a constant which denotes a primitive data type.) 

Since the mode of i is INT, it can hold an INT value'; hence, the following 

assignment is legal 

i   -   1079; 

Further,   since   i holds an INT value,  this value may be assigned to any 

other object whose mode is INT,  e.g., 

temp   *-   i; 

Analogously, variables of mode BOOL and CHAR may be declared and 

given values 

DECL bl, test : BOOL; 

DECL  c,  first : CHAR; 

bl   -   TRUE; 

test   -   bl ; 

c   «-   'q; 

first   *-   c; 

c   -   ' + ; 

The variables bl and test now have Boolean value TRUE, the variable 

first has character value ' q,  and the variable  c  has character value ' + . 

t Note that this differs from the rules of strict Algol 68. 
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An identifier is written'  as a sequence of characters, the first being 

lower case Latin and the rest being either lower case Latin,  digits,   or the 

special characters "p" and "_".   For example: 

i,  j6,  temperature,  intp,   p26street. 

An identifier ends with the last character preceding a blank or special 

character such as *- or +.   Since the minus sign is a special character, 

hyphenated names are written using the connector character "_ " ;  for example: 

overflow.flag,   master.file,   bind.formals . 

3.6   BINARY OPERATIONS 

Various binary operations are defined in ELI,   many having meanings 

similar to Algol counterparts.   Four binary operators take arguments of 

mode INT and deliver results of mode INT; these are:   +,   -,  *,  and   /.   Six 

other binary operators take INT arguments and yield BOOL results:   >,  >, 

<,   ^,   =,   and =£ .    For example,   consider 

DECL   i, j,k, 1 : INT; 

The following are legal ELI forms with modes INT,  INT,  BOOL,  and BOOL, 

respectively 

i + j,    i + j * k * 1,    i > j,     i ^ k + j 

ELI differs from Algol 60 in one respect: all infix operators have the 

same precedence (and all associate to the right). + Any meaning other than 

this must be explicitly indicated by use of parentheses.   For example, 

^Properly speaking,  the above format is only one of two possible formats 
for identifiers,   c.f. §5.5.1.   The introduction of the second format at this 
point would,  however,   only obscure the discussion. 

^This is the same convention as that used in APL [Iver62] . 
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but 

j + k # 1       means       j + (k * 1) 

j * k + i       means       j * (k + i) . 

To get the Algol 60 meaning in the latter case,  one would write (j * k) + i. 

Giving all operators the same precedence is not advocated as a necessary 

principal of language design;  it may be useful in some applications but quite 

awkward in others."1" It is used in ELI only to keep the syntax as simple as 

possible.   We assume that in some cases one of the first extensions to ELI 

would be a hierarchy of precedence levels in the style of section 3.3.1 of 

the revised Algol report [Naur63] . 

Two operators take BOOL arguments and deliver a BOOL result:   nVn 

(meaning logical OR) and "A" (meaning logical AND).   These evaluate their 

arguments only so far as necessary to obtain a result,  e.g.,  if the first 

argument of "v" is TRUE, the second is not evaluated.   Hence,  side effects 

may be different from those of similar Algol 60 forms. 

The operators M=" and 'Vn are not restricted to INT arguments.   They 

accept operands of any builtin mode and return a BOOL result:   TRUE  iff 

the operands are of the same mode and identical objects of that mode.   For 

example,  consider 

DECL cl,c2 : CHAR; 

DECL bl,b2 : BOOL; 

cl   '•*-   's;     c2   *-   c 1; 

bl   <-   FALSE;     b2   -   FALSE. 

Then "bl =b2" has value TRUE,  ncl =b2M is FALSE,  "cl =c2M is TRUE, 

and nbl = FALSE" is TRUE. 

For example,  a hierarchy of precedence levels has proved quite useful in 
Fortran and Algol 60 where the number of operators is small and fixed.    On 
the other hand,   consider APL which has additional data types and has a large 
number of operators.    It would be almost impossible for a programmer to 
remember any precedence hierarchy of all the APL operators.    Hence,   APL 
uses the single,easily remembered rule that all operators have the same precedence. 
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Two other binary operators are less conventional.   As mentioned earlier, 

the application of a procedure to its arguments can be denoted in the style of 

Algol 60,  e.g.,   "f(x)n.   When the procedure takes a single argument,  this can 

also be denoted as a binary operation,  the operator being a small circle,   e.g., 

"fox".  This notation proves most useful in denoting a sequence of unary 

function applications.    Instead of "f(g(h(p(x ) ) )"   one   can write 

"fog o  ho   p o  x",    Mixing the two notations,   one obtains the standard 

usage "fog  o hop(x)". 

Assignment is also treated as a binary operation:   taking as right 

operand an object whose value becomes the new value of the left operand. 

The rule that all binary operators associate to the right makes forms such as 

s«-x + y       or        i  ««-   j + k * 1 

have their conventional meanings.   Since an assignment is a binary operation, 

it has a value:    its right-hand operand.   Hence, 

lt*-5*(j*-k+ 15) 

adds 15 to the value of k,   stores this in j,  multiplies this by 5,  and stores 

the result in k. 

3.7   COMPOUND FORMS 

In carrying out an algorithm,   it is generally useful to evaluate a set of 

forms,  with control passing from one form to the next according to some 

sequencing rule.   Familiar sequencing rules found in programming 

languages include the following. 
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(1) Statement sequencing in Algol 60: 

After evaluating statement n,   statement n+1 is evaluated (unless 

statement n contained an executed go to). 

(2) the conditional expression of Algol 60: 

If the (Boolean expression) is true then one (arithmetic expression) 

is evaluated,  otherwise the other (arithmetic expression) . 

(3) the conditional expression of LISP 1.5: 

Successive elements of a sequence of predicates p.., . . . , p   are evalu- 

ated in turn until one,   say p.,  is found with value TRUE.   The value of 

the conditional is then the value of the associated expression,  e..   If no 

p.  has value TRUE, the value of the conditional is undefined. 

In ELI,  these syntactic constructs and their evaluation rules are unified 

into a single form:   the compound form.   A compound form consists of a 

sequence of statements separated by semicolons and surrounded by the 

delimiters BEGIN and END.   A statement is either a form or a clause,  where 

a clause has the format 

form  =»    form 

(The double-shafted arrow which separates the two forms of a clause may 

be read roughly as a causation or implication sign.)   For example,  the 

following compound form contains three statements:   the first and third 

being forms and the second being a clause 

BEGIN 

i  -   i + 1; 

i   =   k   -»    i + 2; 

j   -   5 * i; 

END 
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A compound form is evaluated as follows.   Its statements are considered 

in turn,   starting with the first.   There are two cases.   (1) If the statement is 

a form it is evaluated.   Following this,  the next statement is considered;  if 

there is no next statement,  evaluation of the compound form stops and the 

value of the compound form is the value of the last form evaluated.   (2) If the 

statement is a clause,  its first form is evaluated,  producing a result 3" 

which is expected to be a BOOL.   If *T = TRUE,  then the second form is 

evaluated,   producing a result *V\  evaluation of the compound form stops and 

if is its value.   If,  however,  5" = FALSE,  then the next statement is con- 

sidered. 

For example,  the above compound form is evaluated in the following 

steps. 

(1) i  is increased by 1. 

(2) If i = k then the value of the compound form is i+2 and evaluation stops. 

(3) Otherwise,   5 * i is assigned to j  and this is the value of the compound 

form. 

To facilitate writing,  two syntactic variations in a compound form are 

allowed. 

(1) The bracketing pair BEGIN, END may be replaced by the pair  [ ,   ]]. 

(2) The semicolon preceding the terminal bracket may be omitted.   For 

example,  the above compound form may be written 

[ i -  i + 1 ; i = k =>  i + 2 ; j -   5 * i ] 

Three special cases of the compound form are of interest. 

(1)    If all the statements are forms,  then we have the (compound statement) 

of Algol 60: 

BEGIN  B-;   s2;   . . . s     END 

where the s. are forms. 
l 
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(2)    If all the statements arc clauses,   we have the conditional expression 

of I asp 1 . f>: 

Ifp,  ->  e,;   |.2 -♦  o2;   . . . pn    >  en] 

where the p.1 s art* predicates and the e.'s arc* arbitrary forms. 

(:*)    If there» are precisely two statements,  the first of which is a clause? and 

the second of which is a form,   we have the if-then-else of Algol: 

[Pj  ->  Ojj  e2J 

3.8   ITERATION 

As in any algorithmic language,   it is frequently necessary to evaluate 

a form repeatedly,   possibly with an index variable changing on each repe- 

tition.   The ELI iteration form is provided for this purpose.   It differs from 

its Algol GO counterparts in a few respects,  most notably in its syntax.   For 

example,   the  following fragment computes the sum of the squares of the 

positive odd integers less than or equal to n 

s   -   0; 

FOR   i   -   1,   3,   ...,nDOs-s + i*i; 

In an iteration,  the first form following the arrow is the initial value of the 

index variable; the step size is the difference between the second and first 

forms; the third form is the limit.   The index variable is a new variable, 

of mode INT,   which is local to the iteration.   That is,  the  i above has no 

relation to any other variable named  i which might exist in the program of 

which the above fragment is a part. 

If the step size is to be 1,  the second form may be omitted.   For 

example,  the following fragment computes the n     Fibonacci number' 

'The Fibonacci numbers form a sequence 0, 1, 1, 2, 3, 5, 8, 13, ... in which each 
number is the sum of the previous two.   They are defined by the relations 

F0 = 0,    Pj-1.    Fn = Fn_1+Fn_2    (n>2) 
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for  n ^ 2,  leaving the result in the variable    fib  : 

old - 0; 

fib *- 1 ; 

FOR   i -  2,   . ..,  n   DO [ temp - fib;  fib <- fib + old;  old - temp ]] 

If the index variable initially exceeds the limit,  then the iteration is 
XL. 

not executed.   Hence,   the above fragment actually computes the n 

Fibonacci number for n ^ 1. 

Occasionally,   it is desirable to terminate an iteration loop before the 

index variable has reached the limit.   That is,  an iteration proceeds until 

its limit is reached or TILL some test condition becomes true.      For 

example,  the form 

FOR i -   1, . . . , n TILL f(x)  DO  x -  g(i, x) 

repeatedly assigns to x the value of g applied to  i and x for  i in the 

sequence   1, 2, 3, . . . , n except that if f(x) is ever TRUE,  the iteration halts. 

A common variation is to carry on an iteration while some form has the 

value TRUE.   One could write 

FOR  i -   1, . . ., n TILL not ° f(x)  DO  x -  g(i, x) 

but the intention is far clearer if the double negative is eliminated.   Hence, 

the equivalent form 

FOR   0 -   1, . . . , n  WHILE  f(x)   DO  x -  g(i, x) 

is admissible;  g of i and  x will be repeatedly assigned to  x for each  i  in 

the range 1 to n,   so long as f(x) remains TRUE. 

* ELI uses the delimiter TILL to avoid confusion with the Algol 60 until; 
the two have somewhat different uses. 
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With both the TILL and WHILE modifiers, the test condition is evaluated 

immediately before each evaluation of the form being iterated. If the value of 

the test calls for stopping the iteration, evaluation of the iterated form is in- 

hibited. 

3.9   MODE-VALUED FORMS 

Those aspects of ELI discussed thus far do not differ significantly from 

Algol 60 or,   indeed,  any other algorithmic language.   Notation and syntax 

have been somewhat idiosyncratic but the underlying semantics and facilities 

provided have been quite conventional.   However,  having explained our 

notation for familiar concepts,  we now have sufficient foundation to present 

the innovative aspects of ELI.   Most important of these is mode-valued forms. 

3.9.1   Mode-Valued Constants and Identifiers 

As discussed in section 3.4, the term mode is used in ELI to designate 

a certain class of objects:   objects corresponding to the intuitive notion of 

data type.   Seven modes are primitive and denoted by mode-valued constants: 

INT,  BOOL,  CHAR,  NONE,  NONEREF,  PTR-ANY,  and  STACK. 

Just as variables can be declared of type INT and are thereby restricted 

to INT values, variables can be declared of type mode and are restricted to 

mode values.   For example, 

DECL ml,  m2,  complex,  rational :  mode; 

The variables ml,  m2,  complex, and rational are mode-valued variables. 

Hence,  it is legal to assign 

ml   -   BOOL; 

m2   *-   ml ; 
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The variables ml and m2 now have the same value as the constant BOOL. 

Hence,  "m2 ■ BOOL" is TRUE while "ml = CHAR" is FALSE. 

Of themselves,  mode constants and mode-valued variables are uninter- 

esting.   However,  we next consider operators which take modes as operands 

and produce new modes.   Four such mode-producing operators are pre- 

defined:   ROW,  STRUCT,   PTR,  and RANY.   From these,  other mode- 

valued forms can be synthesized using conditional expressions,  functional 

composition,  and recursion. 

3.9.2   ROW 

The operator ROW is best introduced by means of an example.   Consider 

the fragment 

DECL   triple : mode ; 

The variable triple has been declared to be an object whose value is a mode. 

triple   -   ROW (3,  INT); 

The variable triple now has a value;  i.e.,  the mode  integer-arrays-of- 

length-three.   Hence,  it is possible to later write 

DECL   x, y : triple; 

The variables  x and y are of mode triple.   This corresponds roughly to the 

Algol 60 declaration 

integer array x, y [ 1 : 3 ]; 

As a consequence of the ELI declaration,  x and y are objects having 

several of the properties of an Algol 60 array.   They can be subscripted,  e.g., 

x [2],  y [i],  y [ f(x [i]) ].   The result of the subscripting operation is an object 

of mode INT which may possess a value and which may be changed by assign- 

ment.   For example, 
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x[l] -   10;    x[2] -  20;    x[3] -  30; 

y[l] -  x[3]-x[2]; 

An ELI variable of mode triple differs from an Algol 60 variable of type 

integer array in one primary respect.   The Algol y can appear only as a 

( subscripted variable) or (actual parameter) , these being the only two 

uses of arrays.   The ELI y can serve as operand for various operators;  in 

particular,  for the assignment operator.   For example, 

y   -   x; 

is legal and assigns to y[l] , y[2] ,  and y[3]  the values of x[l] ,  x[2] ,  and 

x[3] ,  respectively.   This is a copying of values,  not sharing.   For example, 

if we next assign 

x[2]   -    79; 

this does not change y[2]  which remains 20. 

We say that ROW(3, INT) is an ELI form having a mode value and that 

this mode is of class row.   An object (such as y) whose mode is of class 

row' has a number of properties. 

(1) It is composed of a sequence of identical components (e.g.,  x consists 

of 3 components each having mode INT). 

(2) Any one of these components may be selected by subscripting (e.g., 

x[l]  is the first of the 3 INTs). 

(3) The number of components may be determined by applying the function 

length to the object (e.g., length(x) is 3). 

(4) Given two such objects x and y, the form "x *- y" assigns the value of 

y to be the new value of x. 

'It will be useful to abbreviate this notation and say,  for example, 
"y is a row",  meaning that y is an object whose mode is of class row. 
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It is frequently useful to define a mode of class row in which the number 

of components is not bound at the time the mode is created.   For example, 

DECL  string: mode ; 

string   -   ROW (CHAR); 

This first declares string to be a variable of data type mode and then 

assigns to string the mode intuitively described by:   array of any number 

of characters.   Since the number of components in a string is not bound, 

string is said to be length unresolved.   This is not to say that objects of 

mode string have variable length,  but rather that the mode string leaves 

the length open.   A specific object of mode string will have some fixed 

length,  but different strings may have different lengths. 

When a variable is declared to be a string,   it is necessary to resolve 

the mode by specifying a length,  i.e.,  a SIZE.   For example, 

DECL   s : string SIZE <n> ; 

declares  s to be a string variable whose length is the current value of n. 

(The significance of the angle brackets around the length specification will 

become clear in section 3.11.)   Subsequent to declaration,   s behaves as 

any other object whose mode is of class row:   it has a fixed number of com- 

ponents which may be obtained by "length(s)";  it may be subscripted;  it may 

be changed by assignment. 

To summarize,  the operator ROW takes either 

(a) one argument,  a mode 31^ ,  and then produces the mode: 

length unresolved sequence of components each of mode 31Z, 

(b) two arguments,  an integer &  and a mode 9R,  and then produces the mode: 

sequence of & components each of mode 311. 
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In general, the arguments of ROW may be arbitrary forms,  provided that 

they evaluate to objects of the appropriate type.   For example, 

funny.mode   «-   ROW([i>j  =»   i;   10 *j]], 

[p(x)   =*   INT;  q(x) ->  triple;  CHAR]) 

It should be noted that ROW,  like the other three mode-valued 

operators,  is treated as a procedure:   its arguments are evaluated,  its 

body is executed,  and it delivers a result whose data type is mode.   One 

consequence of this is that the output of ROW can be used as the argument 

to a second evaluation of ROW,   e.g., 

bool_ matrix   -   ROW (ROW (BOOL)) ; 

The mode bool-matrix corresponds to the notion of a two-dimensional array 

of Booleans.   Since length has been specified for neither evaluation of ROW, 

bool-matrix is length unresolved with two unresolved dimensions.   Any 

declaration of a variable to be a bool-matrix must specify both dimensions, 

e.g., 

DECL b : bool. matrix SIZE < 5, 10); 

By virtue of the above declaration,  b has the following properties: 

(1) b is a row of 5 objects,  each object being a row of 10 BOOLs. 

(2) length(b) is 5. 

(3) b can be subscripted,  e.g., b[3], the result being a row of 10 BOOLs. 

(4) length(b[i]) is 10 for i between 1 and 5. 

(5) b[i]  may be subscripted,  e.g., b[i] [j] , the result being a BOOL. 

In ELI,  repeated subscripting is always written in the format 

x[ii] im • • • U ] •   Eacn application of a subscript to an object yields a new 

object whose order is one less.   We assume that where the above notation 

is found awkward,   syntactic extensions will be made to allow the more 

181 



familiar  format  x[ i1, i~, . . . , i   ]. 

One final point should be made concerning notation.   The operator ROW 

can be alternately denoted by the symbol R,  allowing somewhat more 

compact definitions.   For example,  bool-matrix may be defined 

bool. matrix   -   R(R(BOOL)); 

with identical meaning. 

3.9.3   STRUCT 

A row is subject to the restriction that all its components have the same 

mode and identical sizes.   A second class of modes,   struct,  allows com- 

posite objects whose components do not necessarily have the same mode. 

The builtin operator STRUCT takes as arguments a set of pairs each con- 

sisting of the name of the component and its mode.   STRUCT delivers the 

mode which describes objects so constructed. 

For example,  the following definition might be used to represent a 

household fuse. 

fuse   -   STRUCT (amps : INT , 

manufacturer : R(10, CHAR), 

blown .flag : BOOL) ; 

The mode fuse is the data type defined as follows.   An object of mode fuse 

consists of three components: 

(1) an INT 

(2) a row of 10 CHARs 

(3) a BOOL. 

Since rows are homogenous objects,   it is appropriate to select their 

components by numerical subscripts (e.g.,  x[i]).   However,   structs are 
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typically inhomogenous and it is useful to refer to their components by sym- 

bolic names.   The above definition specifies both the modes of the compo- 

nents of a fuse and the names of these components.   That is, 

(1) the INT is named "amps", 

(2) the row of 10 CHARs is named "manufacturer", 

(3) the BOOL is named "blown-flag". 

Fuse having been defined,  it can be later used in declaring variables. 

DECL kitchen.fuse, basement.fuse : fuse; 

The variable kitchen-fuse is a fuse;  hence,  it has three components one of 

which is an INT named "amps".   A component may be selected by name 

qualification which is denoted by the object name, followed by a period, 

followed by the name of the component.   For example, 

kitchen, fuse . amps 

Since this is an INT,  it may be given an INT value 

kitchen, fuse . amps   *■   15; 

and used as an operand for an arithmetic expression 

basement _ fuse . amps   -*-   kitchen, fuse . amps + 5 ; 

We have discussed two methods of selecting a component of a compound 

object:   subscripting (e.g.,  x[i]) and name qualification (e.g., 

kitchen-fuse . amps).   These may be intermixed.   For example, 

kitchen-fuse . manufacturer is of mode R(10, CHAR); hence,  it may be sub- 

scripted, e.g.,  kitchen-fuse . manufacturer [i], yielding a CHAR.  If we define 

fuse.box   *■   R(4,fuse); 

DECL central, control : fuse .box; 

then we may write 
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central, control [2] . blown, flag 

obtaining a BOOL,   or 

central, control [i] . manufacturer [1] 

obtaining a CHAR.   In general,   selection proceeds from left to right,  obtain- 

ing successively lower-level components/ 

It is occasionally useful to compute which component of a struct is 

to be selected,  as in the case of rows.   This is denoted by subscripting.   For 

example,  consider 

complex   -   STRUCT(re:INT,   im: INT); 

DECL z: complex; 

The form z[l]  has precisely the same meaning as z . re and z[2]  is the 

same as  z . im;  z[i]  is one of these two depending on the value of i. 

In the discussion of rows,  we introduced the notion of length unresolved 

modes resulting from forms such as ROW(INT) which defer binding of the 

number of components.   Because structs may have components whose types 

are such modes,   it is possible to have length unresolved modes of class 

struct.   For example, 

string   -   ROW(CHAR); 

shipment   -   STRUCT(item : string,   quantity : INT) ; 

Since string is length unresolved,   so is shipment.   To declare a variable of 

'The ability to intermix subscripting and name qualification and have this 
simple rule hold is the principal reason for the format chosen to denote 
name qualification (e.g.,  "kitchen-fuse . manufacturer").   If instead ELI 
used the format used in Cobol or Algol 68 (e.g., "manufacturer of kitchen 
fuse"),  a more complex reading algorithm would be required. 
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mode shipment, the unresolved dimension must be supplied,  e.g., 

DECL j6 : shipment SIZE ( 16) ; 

which specifies that j6.item has length 16.   If several dimensions are unre- 

solved they must all be supplied, for example,  in the format (d-, d2, . . ., d ). 

The correspondence between the d.'s and the unresolved lengths in the struct 

is established by traversing the struct definition top-to-bottom,  left-to-right 

(prefix walk) furnishing successive d.'s whenever an unresolved length is 

encountered.   For example,  consider 

intp   -   R(INT); 

string   *-   R(CHAR); 

matrix   -   R(R(BOOL)) ; 

matrixp   *-   R(matrix); 

comp   «-   STRUCT(a: intp,   b: matrixp*   c: string); 

DECL   x: comp SIZE < 10, 3,20, 25,6); 

This results in the following: 

(1) length (x.a) is 10 

(2) length (x.b) is 3 

(3) x. b[i]   is a matrix,  for i - 1,  2,   3 

(4) length (x.b[i] ) is   20,  for i = 1,2,3 

(5) length (x.b[i][j]) is 25,  for appropriate  i and j 

(6) length (x.c) is 6. 

As with ROW,  it is useful to abbreviate the name STRUCT by its first 

letter.   For example,  comp could be defined 

comp   *-   S (a : intp,   b : string,   c : matrixp); 
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3.9.4   PTR-ANY 

One language feature that finds Algol 60,   Lisp 1.5,  and Algol 68 at odds 

is the existence and usage of pointers.'    Algol 60 lacks the notion.   Lisp 1.5 

uses pointers almost exclusively and hence can consistently suppress the 

notion.   Algol 68 allows pointers,  generally making their appearance 

explicit.* In this respect,  ELI is most like Algol 68.   However,  it goes 

farther toward strict constructionism:   a pointer will,  on occasion,  appear 

explicitly in ELI where a corresponding pointer in Algol 68 will have its 

appearance suppressed. 

In section 3.4,  we mentioned the mode constant PTR-ANY but deferred 

explanation;  we now remedy this omission.   PTR-ANY denotes a primitive 

mode which can be intuitively described as:   the set of objects which can 

point to other objects,  with no restriction on the mode of the objects so 

pointed to.   Consider,  for example, 

DECL  pi, p2 : PTR.ANY; 

The variables pi and p2 can point to (reference) objects of any mode. 

Further,   if pi points to an object, 

P2   -   pi 

copies the value of pi (essentially an address) into p2 so that pi and p2 both 

point to the same object. 

The question arises:   how does one get pi pointing to an object in the 

first place?    The form 

By "pointer",  we refer generically to data objects which contain the 
address of ("point to") other data objects. 

* A fourth possibility is displayed in the treatment of pointers in PL/I 
[lBM66a] .    Here,  pointers exist and appear explicitly,  but suffer a 
significant defect.    It is possible,   in fact easy,  to inadvertently address 
an object of mode Jty- and treat it as if it were of mode^|?.    Such errors 
are not detected. 
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pi   <-   x 

where  x is some object,   say an INT,  will not work,  for this would be 

interpreted as:   copy the value of x (an INT) into pi (a PTR-ANY) which 

would not achieve the desired result.'   In general, there is no way to take 

a declared object x and obtain a pointer to it.   This is neither an accident 

of design nor an arbitrary decision; the reason will be discussed in 

section 7.1.2. 

It is,  however,  possible to create a new object which can be pointed to 

by a PTR-ANY.   For example,  consider 

pi   *-   allocate (bool_matrix, (5, 10)) 

The right-hand side of the assignment creates a new object of mode bool- 

matrix (dimension 5 by 10) and returns a pointer to the object; the assign- 

ment operation copies this pointer into pi.   Hence,  pi points to the bool- 

matrix.   This bool-matrix differs from all objects discussed thus far:   it 

was created by an allocation,  not a DECLaration,  and therefore has no 

name.   It can be designated only by means of pointers which contain its 

address.   If pi is assigned to p2 

P2   <-   pi 

then both pi and p2 point to the same bool-matrix. 

The link between a pointer & and an object O to which it points is pro- 

vided by a primitive function val,  i.e., val(^) = €.   For example, 

val(pl) 

is the bool-matrix allocated earlier.   In particular,  

'In fact,  mode checking performed on assignment will detect this as an 
illegal operation,  for a PTR-ANY cannot contain an INT value. 
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val(pl) [5] 

is the 5     component of the bool-matrix,  a row of 10 BOOLs,  and 

val(pl)[5][3] 

is a BOOL.   Hence, 

val(pl)[5][3]   -   TRUE 

is a legal form which sets the (3,5) element of the matrix to TRUE. 

As pi is a PTR-ANY and hence unrestricted in the mode of objects it 

can address,  it is legal to perform 

pi   «•-   allocate (bool_ matrix, ( 5, 10) ); 

p2   -   pi; 

pi   -   allocate (INT, ( ) ); 

This leaves p2 pointing to the bool-matrix and pi pointing to a single INT. 

In general,  the function allocate takes two arguments:   a mode (i.e.,  a 

mode-valued form) and a size specification;  it returns a pointer to an 

object of that mode and size.   In the case of INT,  or any other length 

resolved mode,  no size specification is required.   The empty size specifi- 

cation is denoted by the form "(   )" whose meaning will be discussed in 

section 3.11. 

3.9.5   PTR 

We have emphasized that objects of mode PTR-ANY are unrestricted 

in the mode of objects they can reference precisely because there are other 

pointers which are so restricted.   We next consider this type of pointer. 

The builtin operator PTR takes a mode 311 as argument and produces 

the mode:   the set of pointers restricted to address objects of type 9TI. 
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For example, 

intp   *-   ROW(INT); 

intpptr   *-   PTR(intp); 

DECL ipl, ip2 : intpptr; 

The variable ipl is of class pointer (abbreviated "ptr") but its specific mode 

is intpptr.   It can point only to an intp.   Hence, 

ipl   +-   allocate (intp, (n)); 

is legal, but 

ipl   *-   allocate (fuse „ box, (   )); 

is not.   The right-hand side of the latter form returns an object of mode 

PTR(fuse-box); assignment of this to an intpptr is a type-error.   As with 

PTR-ANY,  it is possible for two objects of mode intpptr to refer to the 

same object,  e.g., 

ip2   *■   ipl 

leaves ipl and ip2 equal and val(ipl) is now identical to val(ip2). 

We have thus far omitted discussion of pragmatics; however,  a prag- 

matic note is unavoidable at this point lest it appear that pointer modes of 

restricted referent are an arbitrary whimsey.   From considerations based 

only on semantic grounds, the charge is well-founded.   The variable ipl can 

be used for no purpose for which pi (having mode PTR-ANY) could not be 

used;  pi can point to any object to which ipl can point,  the assignment 

pi *- ipl being legal.   Modes such as intpptr are introduced for two 

reasons.   (1) In many implementations it will be possible to use less storage 

for an intpptr than for a PTR-ANY since the latter will carry a type code as 

well as an address.   (2) Possibly more important is that tightly bound modes 
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such as intpptr allow more efficient (i.e.,  complete) compilation.   For 

example,  the compiler when confronted with the form 

val(ipl)[k] 

can determine that it is well-formed,  that it involves subscripting a row of 

INTs,  and that it yields an INT.   Code generation is straightforward.   The 

analogous form involving a PTR-ANY 

val(pl) [k] 

could have any number of possible selection operations and result types, 

depending on what sort of object pi references at the time the form is 

evaluated.   Code compiled for this must reflect the uncertainty. 

It is frequently useful to deal with pointers which can reference objects 

of more than one mode^ but which are not totally unrestricted. The mode of 

such a pointer is said to be of sub-class united pointer.   For example, 

int_or_bool_ptr   -   PTR (INT, BOOL) 

The operator PTR can be given more than one argument and when so invoked 

it produces a mode defining pointers which may reference more than one type 

of object.   If we declare 

DECL  q: int_ or_bool_ ptr ; 

then  q can point to INTs or BOOLs but to nothing else. 

PTR-ANYs and united pointers can,  at different times in the course of 

a program,  reference objects of different modes,  possibly in a fashion not 

known when the program was written.   Hence,   it is sometimes useful to 

'For example,  a Lisp 1.5 pointer can reference an atom,  a two-word block 
(cons cell),  a fixed point number,  or a floating point number. 
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determine the mode of the object referenced by a given pointer.   The builtin 

function mval has been provided for this purpose.   Mval,  applied to any value 

of class ptr yields the mode of the object pointed to.   Hence,  if 

pi   «-   q  -   allocate (INT, (  )) 

then mval(q) is INT as is mval(pl). 

3.9.6   Summary 

Section 3.9 has discussed four'  groups of mode-valued forms:   constants, 

rows,   structs,  and pointers.   Since a large number of notions have been pre- 

sented in a loose,  discursive exposition,  a table summarizing this material 

may be useful. 

Group Sub-Group Example 

constants non-pointer 

pointer 

INT 

PTR-ANY 

row resolved 

unresolved 

ROW (5, CHAR) 

ROW (INT) 

struct resolved 

unresolved 

S(a:INT, b:R(5,CHAR)) 

S(a:INT,  b : R(CHAR)) 

pointer simple 

united pointer 

PTR (ROW(INT)) 

PTR(ROW(INT), BOOL) 

'A fifth group,  rany,  can best be presented after discussion of procedures. 
It will be treated in section 3.14.2. 
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3.10   SELECTION 

The operation of selection has been discussed as a peripheral issue in 

sections 3.9.2-5.   In this section,  we summarize this discussion and treat 

one additional point. 

The operators ROW and STRUCT produce modes of class row and struct, 

respectively;  objects whose modes belong to these classes are said to be 

rows and structs.   Such objects are compound and consist of components 

which may be designated by selection operations.   There are two such oper- 

ations:   qualified naming and subscripting.   The former is applicable only to 

structs.   It is denoted by writing the object,  followed by a period,  followed 

by the name of the component (e.g.,  z.re), the name of the component having 

been specified in the mode definition.   Subscripting is applicable to either 

rows or structs.   It is denoted by writing the object,  followed by a form en- 

closed in square brackets (e.g.,  x[i + j]).   The operation is carried out by 

evaluating the bracketed form which is expected to yield an INT result,   say 
■fVi 

i,  and taking as result the i     component of the object. 

The object  on which selection is performed is not restricted to be an 

identifier:   any form whose value is a row or struct may be employed.   For 

example,   it can be a prior selection (e.g.,  a[i] . re),  in which case the 

selection is carried out from left to right.   It can be a function which 

delivers a row or struct (e.g.,  f(x)[i]).   In particular,   it can be the appli- 

cation of val to a pointer;  e.g.,  if p  points to a bool-matrix,  then 

val(p)[i][j] 

is a legal form having a BOOL value. 

In connection with the last example,   one additional point bears mention- 

ing.   Since such forms occur frequently,   it is desirable to abbreviate their 
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representation.   An abbreviation is immediate if it is observed that the 

appearance of "val" is redundant.   Given that p is a pointer,  it is clear that 

p cannot itself be the object of a selection, for it has no components.   Hence, 

val(p)[i][j] 

can be unambiguously abbreviated 

Pti] [j] 

The latter is defined to be identical to the former.   This schema of abbrevi- 

ation is,  of course,  completely general.   For example,  if f(x) returns a 

pointer to a row of structs each of which has a component named "tx" which 

is a pointer to a bool-matrix,  then 

f(x)[n] . tx[i][j] 

may be written with the same meaning as the explicit form 

val(val(f(x))[n] . tx) [i] [j] 

3.11   AGGREGATES 

In section 3.9 we used,  with only marginal explanation,  forms such as 

M<10)n,  "<10, 6, 3,20, 25)",  and "(   )".   We now turn to a systematic treat- 

ment of such forms which are termed aggregates. 

An aggregate is a special form used for creating compound values,  i.e., 

rows and structs.   Recall that we earlier defined the mode intp by 

intp   -   ROW (INT); 

The simplest aggregates are of mode intp.   For example, 

( 10} is an intp of length 1 

(5, 2 + 1, i, 3*j)  is an intp of length 4 

(   )  is an intp of length 0 
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An aggregate of mode intp is written by enclosing a sequence of forms,   sepa- 

rated by commas,  in angle brackets.   The value of such an aggregate is an 

t th intp whose length is the number of forms present.1    The value of the i     com- 

ponent of the intp is the value of the i     form.   Hence, 

(13, f(w,t)+2*f(x), [p(x) =»   6; 3*n]) 

is a legal aggregate whose value is an intp of length 3. 

An aggregate whose value is other than an intp is written by prefixing 

the list of components by the desired mode followed by a colon.   For 

example,   recall that the mode complex was defined by 

complex   *-   S (re: INT,   im : INT) ; 

Assuming that x and y are INTs,  an aggregate whose value is a complex 

may be written 

( complex : x, y) 

The components of such an aggregate can,  of course,   involve computation 

( complex : (b* x) + c,   z.re - z.im) 

In general,  an aggregate can produce a value having multiple sub-levels. 

For example,  consider 

triple   -   ROW(3, INT); 

initials   -   ROW(3, CHAR); 

record   *-   S (pointl : triple,   point2 : triple,  observer : initials); 

Assuming that i, j, and  k are ints,  we can later write 

'In general,  the size specification in a declaration (c.f. §3.9.2) is an intp. 
An aggregate,  as above,  is one convenient way of denoting such an intp. 
However,  any other form whose value is an intp will do as well. 
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DECL t : triple; 

t   -   (i, j, k>; 

(record: t, (triple : i-j, i-k, j-k), ( initials: ' n, ' m, ' p)) 

The value of the last line is a record. Syntactically, it is an aggregate 

containing three forms: the first is an identifier, the second and third 

are themselves aggregates. 

In all the aggregates discussed thus far,  the mode has been either 

resolved (e.g.,  triple) or length unresolved with dimension one.   In the 

latter case,  the unresolved dimension is deduced from the number of forms 

present.   However,  when the mode is unresolved with dimension greater than 

one,  it becomes awkward to perform such deductions.   Hence,  we require the 

occurrence of an explicit SIZE specification,  using the same format as in 

DECLarations.   For example,  consider the mode 

free _ record   *-   S (point 1 : intp,   point2 : intp,  observer : string) 

in which "points" have unresolved length and the "observer" component is 

a string (a sequence of CHARs of unresolved length).   An aggregate producing 

a free-record may be written 

(free.record : SIZE(3, 4, 6) : 

(x,y, z), 

(x-t,  y-t,  z -t,  x + y + z) , 

( string :'w,   'a,   ' t,   's,   ' o,   ' n)) 

The component point 1 is an intp of length 3,  point2 is an intp of length 4, 

and observer is a string of length 6. 
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3.12   PROCEDURES - DEFINITION AND APPLICATION 

A procedure is an ELI form whose value may depend on some number 

of arguments.   In general,  a procedure may have both side effects and a 

returned value.   Hence,  the notion of procedure call in ELI embraces both 

the (function call) and (procedure statement) of Algol 60. 

A procedure call may be denoted' by writing the procedure name 

followed by a list of arguments enclosed in parentheses,  e.g., 

transform (3 8,  u,  z . im) 

Each argument is a form; hence,  assignments,  compound-forms,  mode- 

valued forms,  and aggregates are acceptable arguments,  e.g., 

transform (z  —  x + y,  ( i, j, k) ,   [p(q) -*  z . re ;  f(z.im)])) 

The procedure name may be replaced by any form which evaluates to the 

desired procedure.   For example, 

[i>j =»  transform;   revert J (38,  u,   z . im) 

applies either transform or revert depending on whether or not  i exceeds  j. 
< 

Returning to the familiar case,  a procedure name is a variable whose 

value is a procedure.   Such variables are of mode proc-var and may be 

created by declaration 

DECL foo, transform,  revert : proc.var; 

'As discussed in section 3.6, the application of a procedure  p to a single 
argument x may be denoted by "p o x" instead of ' p(x)n.   In general,  any 
form satisfying the schema 

(forml)  •   (form2) 

is completely equivalent to 

(forml) (<form2>) 
Hence,  only the latter format will be discussed in this section. 
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Like other variables,  they may be given values of appropriate mode by 

assignment.   One source of such values is proc-vars which already have 

values.   For example,  if "sign" is a proc-var which has a procedure value, 

then 

foo   *■   sign 

assigns the procedure value to foo.   Hence, "foo(x)" is identical to "sign(x)". 

Assignment of proc-var to proc-var merely distributes existing pro- 

cedures.   We now turn to the creation of new procedures.   Consider,  for 

example, 

PROC(d:INT,  n:INT)BOOL;   n = d*(n/d)   ENDP   (4,12) 

This is a procedure application composed of an explicit procedure followed 

by a parenthesized list of arguments. An explicit procedure (or expr) con- 

sists of 

(1) an opening bracket: PROC, 

(2) a parenthesized list of formal parameters, 

(3) a type which declares the result type,  i.e., the mode of the result 

delivered by the expr, 

(4) a procedure body, 

(5) a closing bracket:   ENDP. 

The above expr takes two INT arguments and returns a BOOL value: 

TRUE iff the first argument is a factor of the second. 

This is a particularly simple expr,  for its body consists of the single 

form n = d#(n/d).   In general,  a procedure body consists of one or more 

declarations followed by a sequence of statements (c.f. §3.7),  all separated 

by semicolons.   For example,  the above procedure application could be 

written 
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PROC(d:INT, n: INT) BOOL; 

DECL r : INT ; 

r *- n/d; 

n = d * r =» TRUE ; 

FALSE ; 

ENDP (4, 12) 

Here, the procedure body consists of one declaration and three statements. 

The application of this procedure,  and of procedures in general,  is 

carried out as follows. 

(1) The formal parameters are bound to the corresponding arguments.   As 

this is a complicated process,  we postpone discussion of the general 

case.   In the above example,  this results in the creation of two INT 

variables,  d and n,  and the assignments  d *- 4  and n *■ 12. 

(2) The declarations are evaluated.   In the above example,  this results in 

the creation of an INT variable r. 

(3) The statement sequence is evaluated as a compound form (c.f. §3.7). 

That is, the group of statements is evaluated as if it were a single 

compound form enclosed in the brackets BEGIN,  END.   The value of 

the compound form is the basic value of the procedure. 

(4) The mode of the basic value is checked against the declared result type. 

With a few exceptions to be discussed in the formal definition,  these 

must be the same and,  if so, the basic value is the value of the pro- 

cedure. 

While it is possible to apply an expr directly to its arguments,  this is 

not commonly done.   Instead,  the value of the expr is assigned as the value 

of a proc-var;   subsequently the proc-var is used to denote the procedure. 
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For example, 

DECL factor : proc.var; 

factor   -   PROC(d:INT,  n: INT) BOOL;   n = d*(n/d)   ENDP; 

factor (4, 12) 

At this point,  it may be useful to examine a non-trivial procedure which 

displays the use of the various forms discussed thus far.   We consider a 

procedure which takes two INT arguments and returns TRUE if and only if 

there exists a perfect' number between them. 

test.for. perfect   *- 

PROC (lower: INT,  upper : INT) BOOL; 

DECL  sum : INT ; 

DECL flag : BOOL; 

flag   -   FALSE; 

FOR k - lower,   . . . ,  upper TILL flag DO 

BEGIN 

sum   *-   0; 

FOR j +-  1,   ...,  k-1  DO 

[[factor (j, k)   =*   sum   *-   sum + j J ; 

sum = k  -*   flag   «-   TRUE ; 

END; 

flag   ENDP; 

This tests each successive integer k between lower and upper comparing 

the sum of its factors with k.   If sum = k then flag is set TRUE and the 

'A number n is said to be perfect if it equals the sum of its factors 
(including  1  but excluding n).   For example,   28 has factors 1, 2, 4, 7, 14 
which sum to 28; hence,   28 is perfect. 
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testing stops.   The value of the procedure is the final value of flag. 

It should be noted that the variables j  and  k are not declared.   In 

general,  the index variable of an iteration form is not declared and is local 

to its form,  having no existence outside that form.   If,  in the above pro- 

cedure, there were a declaration 

DECL   k : INT ; 

the  k so declared would be superceded within the iteration by the index- 

variable  k. 

In specifying the process whereby a procedure is evaluated,  we post- 

poned discussion of formal parameter binding.   We now consider this process. 

In the most general case,  a formal parameter consists of 

(1) a name,  e.g.,  "x", 

(2) a type,  e.g.,  "INT",  which is either an identifier or a mode-valued 

constant, 

(3) a bind-class. 

The bind-class may be omitted,  as has been the case in the examples given 

thus far,  or it may be any of the three symbols BYVALUE,  BYREF,  or 

UNEVALED.   An omitted bind-class is given the default value BYREF.   Each 

bind-class has a distinct method of binding. 

Binding BYVALUE is relatively straightforward.   First,  the argument 

is evaluated.   Then a new variable is created,  with name and mode as speci- 

fied in the formal parameter.   Finally,  the value of the argument is 

assigned to the created variable.   Hence,  binding BYVALUE involves little 

more than the combination of three notions previously discussed: 

evaluation of a form,   creation of a new variable,  and assignment.   There 

is,   however,   one complication.   Consider a formal parameter 
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x : intp BYVALUE 

with corresponding argument 

(5,   19,   26,   83,   37,   12) 

The latter evaluates to an intp Y of length 6.   If x were created as a 

declared variable,  its declaration would necessarily include a size speci- 

fication,  e.g., 

DECL   x : intp   SIZE   <6>; 

Since x is instead a formal parameter which is to assume *V as initial 

value,  the SIZE specification of x is derived from the size of *V .   We 

say that the mode of the formal parameter x is length resolved by the size 

of its argument (just as the mode of the declared variable x is length 

resolved by the SIZE specification which follows it). 

To discuss binding BYREF,  it is necessary to first introduce a 

dichotomy which has been suppressed thus far.   The term "value" has been 

used in a sense which embraces two distinct classes of data:   proper objects 

and pure values.   Proper objects include declared variables,  formal 

parameters,  objects created by allocate,  and the components of proper 

objects.   In terms of implementation,  a proper object is a data object 

which is stored in some identifiable place.   A pure value,  in contrast,  has 

no place where it can be said to reside.   Pure values include the values of 

constants,   the values of aggregates, the results of binary operators such 

as  =, ^, +,   -,  and * ,  as well as the results of some procedures. 

To perform a binding which is specified BYREF the corresponding argu- 

ment is first evaluated, yielding a value if .   If if is a pure value, then the 
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specification BYREF is ignored,  and the binding is carried out BYVALUE.' 

If,  however,   y is a proper object the BYREF binding is carried out as 

follows.   Consider for example the formal parameter 

x : INT BYREF 

with argument y which has mode INT.   No new data object is created for x; 

instead, the binding arranges that inside the procedure,  x names the same 

object as y names at the place of call.   In particular,  if an assignment such 

as 

x   -   39 

is evaluated in the procedure, then y is given the value 39.   Hence, the pro- 

cedure may have side-effects caused by assignments to the formal x. 

There is no restriction that the argument be an identifier in order for 

BYREF binding to be carried out. For example, if b is an intp defined at 

the place of call then a legal argument,  of class proper object,   is 

b[i+3*j] 

Similarly,   if z  is complex then the argument 

z . re 

would evaluate to a proper object.   Finally,  if p is a PTR(INT) then a 

proper object is obtained from the argument 

val(p) 

'This apparent anomaly is necessitated because the binding class BYREF 
is incompatible with a pure value argument.   BYVALUE binding is taken as 
a plausible fall-back position which in most cases achieves the desired 
result.   The system could instead deem this an error, but such a dictum 
would,   in general,  be found too austere. 
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Binding a formal parameter UNEVALED differs in one significant way 

from binding either BYVALUE or BYREF.   In the latter cases, the first 

step in binding is to evaluate the argument which,  according to the syntax, 

must be a form.   Binding UNEVALED means that the form is not evaluated: 

the formal parameter is bound to the unevaluated argument.   The formal 

parameter must be of mode form.   For example,  consider the formal 

parameter 

x : form UNEVALED 

with argument 

f(z) + p . a 

After binding,  x is an object with mode form and has as value the form 

nf(z) + p. a".   If the procedure is to do anything interesting with x, there 

must be operators and procedures which take arguments of mode form. 

One such procedure is eval which takes a single form and delivers its 

value.   Eval and other such procedures will be discussed in section 5. 

Here we note that a common use of UNEVALED arguments is in the con- 

struction of procedures which evaluate  certain arguments conditionally or 

only after certain parts of the procedure body have been executed. 

The final step of procedure evaluation is termed proc-exit.   This 

takes the value Y of the statement list and produces the value Y' of the 

procedure.   With some exceptions to be discussed in subsequent sections, 

y^and Y1 are generally equal but they need not be the same object.   There 

are two primary cases. 

(1) Y' will be a pure value if either (a) -j^is a pure value or if (b) Y is a 

proper object whose scope is the procedure being exited (e.g., if Y is 

a variable declared in that procedure). In sub-case (b), "P1 is a copy 

of the object Y.   The latter must be destroyed during proc-exit. 

203 



(2)    If neither (a) nor (b) holds then *V' will be a proper object, the same 

object as *V. 

The significance of this distinction will become apparent in the next section. 

We have now considered each of the forms defined in ELI and have 

thereby concluded the first phase of the informal description.   We now turn 

to a number of advanced topics which have been ignored in the interest of 

initial simplicity. 

3.13   LEFT-HAND  VALUES 

The notion of left-hand values or L-values arose from attempts to give 

precise explanation of assignment and related operations such as procedure 

binding.   The term "L-value" was coined by the designers of CPL [CPL66] 

and it will be useful to establish terminology by examining how the notion 

is treated in that language.   For example,   consider the CPL assignment' 

(if   p(x)   then   i   else   j)    :=   k 

which sets either i or j to the value of k,  depending on whether or not p(x) 

is true.   The CPL explication of this is as follows. 

(1) The left-hand side is evaluated in L-mode' ',   producing an L-value. 

(2) The right-hand side is evaluated in R-mode,  producing an R-value. 

(3) The R-value obtained in step 2 becomes associated,  by virtue of the 

assignment,  with the L-value obtained in step 1. 

'To make the meaning of the construct clear, we have taken liberty with 
the syntax of CPL and rendered the fragment in pseudo-Algol. In proper 
CPL,  the above line would read 

(p(x)  — i, j)   : =   k 

"CPL here uses the term "mode" in the sense of "manner".   There is no 
connection with the ELI use of "mode" meaning "data type". 
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The essential point is that in CPL the normal mechanism (i.e.,  R-mode) for 

evaluating forms such as "(if p(x) then i else j)M produces a result which 

would make the assignment meaningless.   L-mode evaluation operates in 

such fashion that the result it yields is an appropriate candidate for being 

assigned to. 

Speaking in implementation terms,  an L-value is a storage location and 

an R-value is a bit pattern.   An R-value (ft is associated with an L-value £ by- 

setting the contents of location £ to be (ft.    An expression evaluated in R-mode 

produces a bit pattern (e.g., held in the accumulator);  an expression evalu- 

ated in L-mode produces a storage location.   Were the notion of pointer 

present'  in CPL, the following would define the relation of R-value and 

L-value. 

The R-value of a pointer p is the L-value 

of the object to which  p points. 

Using this terminology,  we can discuss the treatment of values in ELI. 

Unlike CPL,  and almost all other languages, ELI uses the convention that 

all forms are evaluated in L-mode and all values are L-values.   We call 

this the locative condition.   In implementation terms,  whenever a form is 

evaluated the actual result is a storage location.   If, for example,  a form 

has INT value, the evaluator obtains the address of a storage location 

containing a bit pattern which is to be interpreted as an integer (e.g.,  a 36 

bit quantity in two's complement representation).   In an assignment such as 

x   -   y 

the evaluator obtains two addresses and then copies the contents of the 

'Its absence is a real weakness of the language; however, the above 
relation should be clear even in its absence. 

* If this is unclear,  the following diagram may be helpful: 

p: 1        —4 »1 1 
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right-hand address into the left-hand address.   In consequence,  the follow- 

ing forms are all legal in ELI: 

[p(x)   +   i; J]  *-   k 

val(r)   *-   (x, y) 

val(r) .re   ««-   z . im 

f(z)   -   f(w) 

The last form deserves special comment.   If the value of f(z) is a pure 

value then assigning to it the value of f(w) accomplishes no useful purpose, 

for this value is lost once the assignment has been performed.   If,  however, 

the value of f(z) is a proper object then assignment to it is an assignment to 

some variable or allocated object.   For example,   suppose  p is a PTR(intp) 

such that val(p) has value (2, 4, 6, 8).   Further,   suppose f is defined 

f   -   PROC(x:intp BYREF,   i: INT) INT; 

x [length(x) - i]    ENDP ; 

Consider 

f (val(p), 1 )   -   100 

The value of the left-hand side is the third component of the intp to which 

p points.   The assignment changes this to have value 100.   Hence, val(p) 

now has value < 2, 4, 100, 8) . 

3.14   ADDITIONAL TOPICS CONCERNED  WITH  MODES 

Several aspects of mode handling in ELI have been postponed because 

their in-line presentation would have required extensive forward reference. 

We now address them. 
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3.14.1   Initial Values 

The first of these is relatively minor and requires mention only because 

it goes against tradition:   all objects in ELI are given an initial value. 

Unlike Algol 60,  in which a declared variable is said to be "undefined" until 

an assignment to it has been executed,  ELI explicitly rules out the notion of 

an object with undefined value.   Formal parameters obtain initial values 

from their arguments;  declared variables and allocated objects are initial- 

ized by the evaluator to default values based on their data type.   For each of 

the following four primitive modes there is a default value: 

INT has default value 0 

BOOL has default value FALSE 

CHAR has default value the blank character 

PTR-ANY has default value NIL 

The default value of an object of mode 9H is determined as follows. 

(1) If 9TT is in the above list, the value is as specified. 

(2) If 911 is of class ptr, the value is NIL (c.f. §3.16.1). 

(3) If 311 is of class row or struct,  each component is given the value 

obtained by applying this procedure to the mode of that component. 

Since all objects are initialized,  it is legal to use an object without 

having explicitly given it a value,  e.g., 

DECL  x : INT ; 

DECL b : BOOL; 

foo (x, b) 

The values of the arguments to foo are 0 and FALSE.   Since these values 

are defined,  rather than an accident of the implementation, they may be 

used without fear that a different implementation will produce different 

results. 
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3.14.2   Generic Procedures and the Operator RANY 

There is one additional builtin operator which produces modes:   RANY, 

which stands for "restricted any".   The notion of RANY is motivated by the 

observation that certain conceptual operations are applicable to objects of 

several different data types.   For example,  the notion of norm is well- 

defined on INTs (meaning absolute value),  complex numbers (meaning 
VI—2 9~"^ t 
Vx   +y      ) and strings (meaning the number of CHARs in the string).' 

In such circumstances,  it is desirable to denote the operation by a single 

procedure name which is applicable to arguments of several modes,  e.g., 

norm(i + j), norm(( complex: x, y) ), norm(stringvar) 

The procedure invoked by ' norm'   must accept an argument of several 

possible modes:   INT,  complex,  or string.   In such circumstances, the 

mode of the corresponding formal parameter is said to be of class rany. 

Consider the definitions 

DECL  item : mode ; 

DECL norm : procvar; 

item   «-   RANY (INT,   complex,   string); 

norm   •-   PROC (x: item) INT ; 

typ (x)    =    INT   =»   sign(x) * x; 

typ (x)    =    complex  =*   sqrt ((x.re * x.re) + (x.im*x.im)) ; 

typ (x)    =    string  =»   length (x); 

ENDP ; 

'At the cost of complicating our example,  we could add intp,  bool-matrix, 
and a host of other modes to this list. 
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The definition of item may be interpreted roughly as:   item is the mode 

consisting of INTs or complexes or strings.   We say that INT,  complex, 

and string are the alternatives of item, that item is of class rany,  and 

that item is type unresolved. 

The reasons for this choice of terminology will become clear if we 

consider the evaluation of a form such as 

norm(f(a)) 

which proceeds as follows. 

(1) The argument f(a) is evaluated,  producing a value with some mode 9TI. 

(2) Since the formal parameter x is declared to have mode item and since 

item is type unresolved, the mode 9H of the argument is used to resolve it. 

If 9H is one of the alternatives of item then the binding is legal and 911 

becomes the actual mode of x;  otherwise, the binding is illegal and an error 

results. 

(3) The binding of x and the evaluation of the procedure occur just as if x 

had been declared to have mode 311. 

In the procedure body,  x is either an INT or a complex or a string; the 

choice having been made on procedure entry, the mode of x cannot change 

in the course of a given procedure activation.'    Since each case requires 

separate handling,  it must be possible to determine in the body of norm 

which of the three cases has occurred.   To allow this and related testing 

'It is here that the difference arises between rany in ELI and union in 
Algol 68. If ELI allowed union and if x had been declared as a formal 
parameter of mode 

UNION (INT,  complex,   string) 
then x would assume one of these modes on procedure entry, but would be 
free to change to any of these modes during that activation. 
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there is a builtin function typ which,  applied to any value, yields the mode 

of that value.   For example, the second line of norm reads:   if typ(x), the 

actual mode of x on this activation of norm,  is INT then multiply x by its 

sign and return this value. 

The process of type resolving a rany is closely related to that of length 

resolving a row.   In each case, there is some commitment that has not been 

made at the time a procedure is written:   the length of some object in the 

case of rows,  the choice of one mode among several in the case of ranys. 

The commitment is postponed to the time of procedure activation,  at which 

time an attribute of the argument resolves the uncertainty. 

The use of ranys is not restricted to formal parameters.   It is occasion- 

ally useful to specify that a declared variable takes its mode from a finite 

set,  deferring choice until run time.   For example,  in 

DECL   z : item SPECIF p(n) ; 

z  has declared mode item.   The actual mode is determined by p(n) when 

the declaration is evaluated.   The value of p(n) should be a mode in the set 

{INT,  complex,   string}.   If so, this value becomes the actual mode of z; 

if not,  the specification is illegal and an error results. 

3.15 MODE RECURSION AND FORWARD REFERENCE 

One of the subtle problems which arises in providing a data type defi- 

nition facility is mode recursion and forward reference.   In this section, 

we present the problem,  outline its solution in other languages,  and dis- 

cuss how it is handled in ELI. 

As an example of the pitfalls readily accessible,  consider the definition 

set (in some language,  not necessarily ELI) 
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DECL ml, m2 : mode; 

ml - STRUCT (a: INT, b : m2); 

m2 - STRUCT (c : CHAR, d:ml); 

The intention is to define ml (and m2) as being recursive;  if x is of mode 

ml then x contains a proper sub-part,  denoted "x.b.d",  which is also of 

mode ml.   Such a property is clearly unusual and perhaps disturbing/ 

One might ask whether any meaning can be attached to such definitions. 

The answer to this depends on the model chosen for storage allocation. 

Until now,  our discussion has been free from consideration of such issues 

for the elementary notions in data type definition are independent of imple- 

mentation.   Here,  however, the axioms we choose for modes depend criti- 

cally on our model.   If an instance x of a mode 311 is regarded as filling 

some fixed segment of core,  then for  x to contain as proper sub-part an 

object of mode 9fR is impossible.   If, however,  no such requirement is im- 

posed then implementation (and subsequent rationalization) present only 

minor difficulty.' ' 

For example,  the policy might be adopted that any composite object of 

n components is to be implemented by a vector of n pointers ("pointers" in 

the systems programming,  not ELI,   sense).   Creating an instance x of 

mode ml   is then carried out by allocating a two-pointer vector and initial- 

izing the first pointer to reference a separately allocated INT.   If "x.b" is 

'For example,   Morris [Mor68] in his study of a type system in lambda- 
calculus models of programming languages explicitly rules out type 
expressions having this property. 

' ^So that it is clear we are not merely raising a strawman,  we wish to 
emphasize that recursive modes have appeared in proposals for extensible 
languages,  for example the data definition facility of Standish [Stand67] . 
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ever evaluated,   an object of type m2 is allocated and field "b" of x is set 

to reference it.    Uses of deeper components of x(e.g. ,   "x.b.d.b") are 

handled analogously: x grows as references to deeper levels are made, 

storage allocation being driven by the evaluation. 

The difficulty in handling recursive modes is not confined to the allo- 

cation of storage for mode instances.    Processing the mode definition is 

also made more difficult for the usual problem of binding the defined name 

in a recursive definition arises.       Hitherto,  we have regarded a mode 

such as 

■" For example,   consider a definition of factorial 

factorialn) ■   if n = 0   then  1 else factorial (n-1) 

Suppose we wish to convert this to a definition in which the variable 
"factorial" is bound to an equivalent A -expression.    We might try 

factorial =   An.   if n= 0   then 1 else factorial (n-1) 

However,  this would be incorrect,  for the variable "factorial" used 
on the right-hand side is a free variable of the form whereas we want 
to identify it with the value of the defining form.   That is,  the desired 
value for "factorial" on the right-hand side is the one what will be 
established by the definition.    This is the typical manifestation of any 
recursive definition.    To get the desired result,  we proceed as follows. 
Rewrite the definition as 

factorial =   { ?\ f. An.  if n = 0   then 1 else f(n-l)} factorial 

this has the format 

A =FA 

where 

F   =  {Af. An.  if n= 0 then 1 else f(n-l)) 

For the A-calculus,   there is a fixed point operator Y (or paradoxical 
combinator,   c.f. [Cur58] ) having the property that for any well-formed 
formula F, 

YF =   F(YF) 

Using F,  we can obtain a solution to A  =  FA,  namely 

A  =  YF 

since 

A  =  YF =   F(YF)  ■   F 

Hence a correct definition of factorial,  from which the circularity has 
been removed is 

factorial  =    Y  { A f.  An.  if n = 0 then 1 else   f(n-l) } 
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ml   *-   STRUCT (a: INT,  b:m2); 

as an assignment in which the left-hand side derives value from an operator 

acting on the operands in the right-hand side.    In the case of 

ml   «-   S(a:INT, b: m2) ; 

m2  *- S(c: CHAR,  d:ml) ; 

this schema fails.    The value of m2 required in the first line is not the one 

defined at that point but rather the value established in the second line. 

That is,   the mode recursion manifests itself as a logical circularity in the 

definition.    Formally,  the required definition may be rendered in the 

X-calculus  as 

(ml,   m2)   = 

Y{A(x,y). (S(a:INT,  b:y), S(c:CHAR,  d:x))} 

where Y is a fixed point operator. 

The desired definition can be obtained,  but only by some mechanism 

more complicated than simple assignment.    One possibility is to implement 

an operator Y which handles modes in our programming language (for a 

related example,   c.f. [Land66c] ) and convert the above definition into an 

This is a purely formal definition written in analogy with recursive 
procedure definitions such as that for factorial.    To derive it,  we observe 
that ml and m2 must satisfy the relations 

(ml,m2) =(STRUCT(a:INT,  b:m2), 

STRUCTfc: CHAR, d : ml)) 

This may be rewritten as 

(ml,m2)   -    [Mx,y).    (S(a:INT,  b:y), 

S(c:CHAR,  d: x))) (ml, m2) . 

If Y is a fixed point operator having the property that YF =   F(YF),   then 
using the same argument as given for factorial,  we obtain 

(ml,m2) =   Y{A(x,y). (S(a:INT,  b:y), 

S(c:CHAR,  d:x))} 
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assignment to the pair (ml,   m2).    While in principle this can be made 

to work,   there does not appear to be any simple or efficient technique. 

Hence,  the introduction of Y would violate the dictum of parsimony as 

well as economy. 

Another possibility is to imitate the Algol 60 procedure declarations 

and require such mode definitions to be recast into declarations which 

are treated specially by the evaluator.    For example,   in pseudo-Algol, 

this would read 

begin 

mode   ml   struct (a : int, b : m2); 

mode   m2   struct(c : char,  d : ml); 

Special treatment includes recognizing the mutual recursion and handling 

it in a fashion analogous to the mutual recursion of procedures. 

A third solution is given by Standish' s data definition facility 

[Stand67]    which allows the definition 

ml   <-   S(a: INT,  b : m2) ; 

to remain an executable assignment statement,  but recognizes m2 as 

"undefined".    For each such variable which is used before its definition, 

a use chain is constructed consisting of all places in which it is used. 

When m2 is defined 

m2   •-   S(c:CHAR,  d : ml) ; 

the use chain is searched and the definition of ml is reexamined and 

  
We have taken our usual liberty to change notation.    Standish would 

write 
ml   «-  [a :int | b :m2]  ; 
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completed.    It should be noted that this scheme requires some additional 

mechanism to handle the definition of m2 which depends on the partially- 

defined variable ml. 

Having explored this simple example of mode recursion in some 

detail,  we turn to another class of problem cases.    Consider the 

definition 

m3   «-   S(a:INT, b:PTR(m3)); 

The mode m3 is not recursive,  for an instance of m3 does not contain 

an m3 as a proper sub-part;   the component "b" merely points to an 

m3.    The definition does,  however,  use m3 on its right-hand side 

before m3 is defined and hence is said to involve a forward reference. 

Note that here,  as with recursive modes,  use of forward reference is 

an   intrinsic   attribute of the mode,  not an accidental property of this 

particular definition.    By logical extension we speak of the mode as 

being of forward reference.    Clearly,   recursive modes are a subcase 

of forward reference modes.    Also,  it is clear that some of the dif- 

ficulties in processing the former occur with all forward reference 

modes. 
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The set of problem cases does not stop here.   Were we to consider 

definitions allowing unions (in the Algol 68 sense,  c.f. §2.2.2),  a plethora of 

additional difficulties arise.'    We will avoid all these and summarize the two 

issues raised above. 

(1) Should recursive modes be permitted?   If so,  how should they be 

expressed in the language and how should they be handled by the 

evaluator ? 

(2) Should other modes of forward reference be permitted?   If so,  how 

expressed and how handled? 

There are,  of course,  no absolute answers to such questions.   Each 

language must strike its own balance in trading off generality for the 

efficiency of special cases.   One can conceive of several well-designed 

languages which answer these questions in radically different ways.   In the 

case of ELI,  there are several relevant design constraints which largely 

determine its answers. 

To begin withjthe most important of these,   it will be recalled that ELI 

is to serve as the base for an extensible language.   Hence, those language 

features which can be reasonably defined in terms of more primitive 

features should be excluded from ELI proper and left for extensions.   As 

outlined above,  objects having recursive modes can be constructed using 

pointers,   so that recursive modes can be obtained as an extension. 

Indeed,  were recursive modes built into the language,   they doubtlessly 

would be implemented in a similar fashion.    Therefore,   it is not clear that 

a significant advantage is obtained by putting recursive modes into the base. 

Note that rany does not enter into this discussion as there are no objects 
of class rany and modes of class rany cannot be used in defining new modes. 
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Further, for a language to serve as an extensible language base it 

should be not only parsimonious but literal as well.   That is,  it should dis- 

play its structure and mechanisms as clearly as possible,  shunning 

semantic sugar.   In particular,  since pointers are a fundamental notion in 

ELI,  it seems advisable to exhibit their appearance wherever possible. 

Hence, to use pointers in implementing recursive modes but suppress their 

existence seems unwise.   (These considerations apply only to a base 

language.   Such suppression is precisely that which is desired in packaging 

extensions offered to the public domain.)   For these reasons,  we do not 

admit recursive modes. 

Turning to other modes of forward reference, the issue is not "whether?" 

but "how?".   In any language with typed pointers,  the construction must be 

admitted.   Indeed,   the basic construct for creating linked lists and similar 

structures is blocks of type 911 containing one or more components which may 

point to other blocks of type 9H.   In ELI, the issue is still more decisive, 

for certain data structures required by its evaluator necessitate forward 

reference modes J   Since the evaluator is an ELI program,  its data 

structures must be definable by the data type definition facility. 

The implementation of forward reference modes is far less clear-cut. 

It is possible,  of course, to use any of the techniques for handling recursive 

modes discussed earlier,  with appropriate simplifications.    For example, 

Basel [Jorr69]   which allows forward reference but not recursion requires 

all operations of mode creation to be definitions occurring in the declaration 

portion of blockheads.    All mode definitions in a block are processed 

together,  using a three-pass scheme. 

'That is,  recursion in the concrete syntax requires use of forward refer- 
ence in the abstract syntax,  (c.f. §4.1 for an explanation of these terms.) 
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One disadvantage of this class of techniques is that they generally' 

involve restricting the right-hand side of mode definitions to a fixed set of 

mode operations (e.g.,   struct,  row,  ref,  etc.) taking mode identifiers as 

arguments,  with the single combination rule being functional composition. 

That is,  the following type of construct is generally forbidden as a defining 

form 

Up(x)   -»   complex;   q(x)   *   R(4, INT);   R(INT)] 

The prohibition stems from the difficulty of handling arbitrary forms 

involving forward reference.   While in principle one could use a special 

evaluator which leaves a hole, to be filled in later, for each forward 

reference,  this is complex and expensive.   By restricting the forms which 

can appear to an essentially fixed set,  the processor is simplified at the 

expense of the language. 

In the design of ELI,  it was decided that all constructs should be 

treated as executable forms whenever possible.   In particular,   it was 

decided that mode definitions should be computable,   so that the above con- 

struct should be legal.   This required a radically different technique for 

handling forward reference modes,  which we discuss below.   Before doing 

so,   it is necessary to discuss the definition of modes in greater detail than 

was possible in section 3.9. 

There,  the term "mode" was informally defined as the ELI construct 

corresponding to the intuitive notion of data type.    Formally,   this state- 

ment needs refinement.    Corresponding to each unique data type (whether built 

into the language or programmer-defined) is a compound object which holds 

needed information concerning this data type.    This information includes: 

For example,   Basel and Algol 68 both impose this restriction. 
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(1) functions for assignment and accessing components (in the case of com- 

pound objects),  (2) a class code (row,  struct,  or ptr),  and (3) a descriptor 

specifying components (in the case of compound objects).   The object hold- 

ing this information is said to be a data type definition block or ddb;    i.e., 

the mode of this object is ddb.   In other words,  a ddb is a structure con- 

sisting of an assignment function,  a selection function,  a class code, a 

descriptor,  and a few other items; for each data type there is a ddb which 

defines its properties. 

Having defined the notion of ddb,  we can give a precise definition of 

mode:   a mode is a pointer to a ddb.   That is, the builtin definition of mode 

is equivalent to 

mode   «-   PTR (ddb); 

Several consequences of this should be noted. 

(1) Assignment of one mode to another entails copying a pointer,  e.g.,  if 

ml is a mode, then 

ml   *-   intp 

leaves ml pointing to the same ddb that intp points to. 

(2) The value of a mode-valued constant is a pointer to a constant ddb. 

For example, the value of the constant INT is a pointer to the ddb that 

defines the primitive notion of integer in ELI.   The assignment 

ml   <-   INT 

sets ml to point to this ddb. 

(3) Mode-valued operators such as ROW deliver a pointer to a ddb.    This 

ddb is stored in a block obtained by an allocation.    The assignment 

triple  <-  ROW (3,  INT) 

stores the value of this pointer,  a mode value,  into the mode-valued 

variable triple. 
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In addition to assignment, there is a second operation,  called m-def 

and denoted by "«=",  used for associating a value with a mode-valued 

variable.   For example,  we may write 

triple   4=   S(a:INT,  b : INT,  c : INT) 

which is roughly equivalent to 

val (triple)   -   val °S(a: INT,  b:INT,  c: INT) 

The operator "«=" takes two arguments of type mode,  applies val to the left- 

hand argument obtaining a ddb,  and copies into this ddb the result of apply- 
- 

ing val to its right-hand argument.   The immediate consequence of this oper- 

ation is that any mode which points to the changed ddb is changed in meaning. 

The technique used in ELI for excluding recursive modes and handling 

other modes of forward reference can now be discussed.   There are four 

builtin operations for creating modes:   ROW,  STRUCT,  RANY,  and PTR. 

All but PTR require that the modes delivered as arguments be already 

defined (by a prior assignment or m-def),   and that these modes not be of 

class rany.    The first condition is effectively equivalent to the requirement 

that there be a partial ordering on modes created using ROW,  STRUCT, 

and RANY.    For example,   our canonical illustration of recursion 

ml    i- S(a:INT,  b : m2) ; 

m2   *-S(c:CHAR,  d : ml) ; 

violates this restriction and is illegal.    As a second illustration,   consider 

ml   *- S(a: INT,  b : m2)  ; 

m2   <-S(c:CHAR,  d:BOOL); 
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This is not admissible as it stands,  but the requirement of partial ordering 

is not violated;  hence,  it can be re-ordered and rendered legal. 

The operator PTR,  on the other hand,  accepts modes which have not yet 

been defined,  requiring only that they have a non-null value.   That is,  a 

mode is an acceptable argument to PTR if either (1) it has been properly 

defined,  or (2) it has been given a dummy initialization.   In the latter case, 

it is said to be weakly defined.   Consider, for example, 

DECL ml, m2 : mode; 

m2   -   allocate (ddb, (   )); 

ml   -   S(a:INT,  b:PTR(m2)); 

The second line allocates a ddb with default values (c.f. §3.14.1) and sets m2 

to reference this.   The third line uses m2 as an argument to PTR which is 

legal since m2 is non-nullj   PTR produces a mode value which is used as an 

argument to STRUCT.   Continuing with the example, the desired definition is 

completed with 

m2   <=   S(c:CHAR,  d: PTR (ml)); 

The definition of m2 is performed by an m-def.   That is,  before execution 

of the line,  m2 points to a ddb, the m-def assigns to this ddb the definition 

appropriate to a struct with two components:   an INT named "c" and a 

PTR(ml) named "d". 

To summarize the above discussion,  we list the conventions adopted 

in ELI. 

(1)   STRUCT,  ROW,  and RANY require their arguments to be properly 

defined; recursive modes are thereby excluded from the language. 

^This presents no problem in implementation:   PTR can accept weakly 
defined arguments because it only requires the locations of the ddbs of its 
arguments,   (c.f. §5.9.5) 
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(2)    Other modes of forward reference can be defined using PTR and m-def. 

The schema for defining such a mode 3TC is as follows. 

(a) 9H is given a dummy value by the initialization 

9TC   -   allocate (ddb, (   )); 

(b) 9H is used as an argument to PTR. 

(c) 9ft is properly defined by an m-def 

91Z   4= 9 

where & is the defining form. 

3.16   BUILTIN DATA TYPES CONTINUED 

In section 3.4 we presented the ten builtin data types (Boolean,  integer, 

character,  mode,  ptr-any,  procedure,  none,  noneref,   symbol,  and stack) 

and discussed the first four.   The types ptr-any and procedure were treated 

in sections 3.9.4 and 3.12.   Here,  we examine the remaining four:   none, 

noneref,   symbol,  and stack. 

3.16.1   NONE  and  NONEREF 

The mode NONE is the data type of the empty object.   For example,  a 

procedure which performs its operation by side effects may be declared to 

return NONE (i.e.,  the result-type is NONE,   c.f. §3.12).   The procedure 

then returns no value;  if there is a value in hand it is thrown away. 

Occasionally,   it is useful to denote the empty object; hence,  there is a 

Note that we do not want such an initialization to be performed automatic- 
ally on declaration,  for one does not always want to allocate a ddb when 
creating a mode-valued variable. 
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constant having it as value,  written "NOTHING".   For example, the following 

compound form is exited with no value if p(x) is TRUE 

[x   -   f(y);   p(x)   ->   NOTHING;   z   -   q(y) ] 

The mode NONEREF is the data type of the value NIL.   This,   in turn, 

is defined as follows.   An object of class ptr always has some value;  either 

this is the address of some object of the appropriate type,  or it is the value 

NIL.     NIL has the property that if p is any pointer, the assignment 

p *■ NIL is legal.   Since p is a pointer,  we may ask:   to what does  p then 

point?   It is useful to adopt the convention that NIL,  or a NIL-valued pointer, 

points to NOTHING.   Hence, val(NIL) = NOTHING and mval(NIL) = NONE. 

3.16.2 Symbols 

The term "symbol" is used with approximately the same meaning as 

"atom" in Lisp 1.5 [McCar62].   That is,  a symbol is a sequence of zero or 

more characters represented internally by a pointer to a symbol table entry. 

A symbol constant is written by enclosing the sequence of characters in 

double quote marks,  for example:   "symbol",  "ANOTHER", 

"yet* %#159 another",  and   "@b$5-g". 

3.16.3 STACKS 

The mode STACK designates a class of objects which behave like ordi- 

nary LIFO (last-in-first-out) stacks with a few additional properties which 

make their use "safe".   The introduction of stacks into the language is moti- 

vated by the existence of a class of algorithms which require dynamic 

storage allocation but (a) use it in strict LIFO fashion and (b) can perform 

explicit freeing of unused storage.   Such dynamically allocated storage can 

be obtained using allocate alone, but then there is no way to free these 
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blocks or to make use of the knowledge that some set of blocks is created 

and destroyed in LIFO order.   A STACK allows an algorithm which uses 

dynamic storage in a disciplined fashion to gain the efficiency which that 

discipline permits. 

STACKs can best be described by means of an extended example. 

Consider 

stack, ptr   «=   PTR (STACK); 

DECL   s : stack, ptr ; 

The declaration establishes that  s  is a variable which can point to a STACK. 

Next,   suppose 

s   -   allocate (STACK, (t>); 

s now points to a STACK t units long.   The length of a STACK specifies its 

capacity for holding objects.   It will be convenient to use " S " to denote the 

STACK to which  s  points,   i.e.,   S ■ val(s).   Since nothing has been stored 

in    S ,   it is currently empty.   However,   suppose at some later time we 

execute 

DECL  pi, p2, p3 : PTR.ANY; 

pi   *-   get. stack, space (s, intp, ( k) ); 

The procedure call obtains from the STACK to which s points a block large 

enough to hold an intp of length k,  initializes the block,  and returns a 

PTR-ANY which references the intp.   The assignment sets pi to reference 

the intp.   If next 

p2   *-   get. stack, space (s, string, (n) ); 

then S   contains two items:   an intp and a string.   The "top" or last element 

of   S  is the one most recently created — here,  the string.   Subsequent calls 
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on get-stack-space may create additional elements in the STACK S . 

To a first approximation,   pi and p2 behave as if they referenced ordi- 

narily allocated blocks.   For example, 

val(pl) [i] 

is an INT:   the i      element of the intp in  5.   Similarly, 

val(p2) [3]   -   ' w 

rd is an assignment to the 3      element of the string in  <S.   Further,  the 

PTR-ANY values may be copied,  e.g., 

p3   *-   p2 

sets p3 to reference the string so that val(p3) = val(p2).   It must be empha- 

sized that pi,  p2,  and p3 point into   S;  i.e., to objects created within the 

STACK.   The stack-ptr  s,  on the other hand,  points to the STACK. 

Pointers into STACKS are unusual in that the objects to which they 

point may be destroyed.   Continuing the above example,  suppose 

free, last (s) 

This destroys the last object created within 5 ;  i.e., the string.     S now 

contains a single element, the intp.   The above line not only destroys an 

object,  but also changes the value of all pointers (here,  p2 and p3) which 

reference it to NIL.   That is,  free-last(s) carries out two functions: 

(1) destroying the last object in  S   so that the space can later be reused, 

(2) destroying all references to the object so destroyed.   After the freeing, 

val(p2) = val(p3) = NIL; however, the value of pi is unchanged.   A subse- 

quent call "free-last(s)" would make pi NIL as well. 

There is one additional procedure which is useful in operating with 

stacks:   last-in.   The form 
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last, in(p, s) 

where  p is a PTR-ANY and  s is a stack-ptr,  is a predicate with value TRUE 

if and only if p  points to the last object created within the STACK to which s 

points.   In the above example,  before the string is freed we have 

last-in(pl, s) = FALSE and last-in(p2, s) = TRUE.   After the string is freed, 

we have  last-in(pl, s) ■ TRUE,  last-in(p2, s) ■ FALSE. 

The three procedures get-stack-space, free-last,  and last-in are the 

only operations defined on STACKs.   Collectively,  they give an operational 

definition of the mode STACK,  indeed,  the only definition which need be given. 

3.17   MISCELLANEOUS TOPICS 

3.17.1   Mode Compatibility 

Whenever an attempt is made to associate with an object a value having 

"incompatible" mode,  a type error results.   Such associations can be 

attempted under two principal circumstances:    by an assignment,   and in 

binding a formal parameter.   Since the notion of "compatibility" is treated 

somewhat unusually in ELI,  a brief discussion is in order. 

With a few exceptions involving pointers (c.f. compatible in §5.14),  two 

modes are compatible if and only if they reference the same data definition 

block,   i.e.,   contain the same address.   This makes possible very rapid 

type checking:   essentially,  a single address comparison.   This also makes 

it possible to create objects with identical structure but incompatible modes, 

for example 
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triple   -   R(3, INT); 

triple.too   «-   R(3, INT) ; 

DECL   x : triple ; 

DECL   y : triple.too; 

The variables x and y are incompatible and assignments such as ,!x +- y" 

are type errors J   In general, this convention produces a desirable result. 

Distinct names will be used to designate conceptually distinct data types; 

a given type will be defined only once so that the above problem will not 

arise.   However,  it should be noted that two data types may have identical 

representations yet be treated differently.   For example, 

point   -   S(x:INT, y : INT) ; 

pair    -   S(x:INT, y : INT) ; 

In most cases,  assignment of a pair to a point or passing a pair to a pro- 

cedure which expects a point would be a conceptual error. 

3.17.2   Free Variables 

In all the examples thus far,  all variables used in procedures have 

been bound;  i.e.,  either formal parameters or declared variables.   A 

variable which is not bound is said to be free, for example,  d in 

f   -   PROC (x: INT) INT ;    x + d    ENDP ; 

When f is executed,  its value is the sum of x and d.   The value of x is 

the value of the argument to f; the value of d is defined to be the value of 

"^The form "FOR i *-   1, . . ., 3  DO x[i] *- y[i]M is,  however,  legal and 
produces the intended action. 
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the most recently created bound variable of that name.    Here,   "recently" 

refers to chronological order of evaluation.    Another way of stating this 

is that the meaning of free variables in an explicit procedure is that which 

would be obtained by substituting the text of the procedure in place of 

the procedure application. 

In general,  free variables names are identified with objects according 

to dynamic scoping (as in Lisp).   It should be noted that this differs from 

lexical scoping of free variables which occurs in the "X-calculus,   Algol 60, 

Algol 68,   and most other programming languages.    It is our contention 

that the former is the better choice,   leading to simpler,  more consistent, 

and more useful languages.    However,  we will postpone discussion of this 

point until section 7 where we carry out a general assessment of ELI. 

3.17.3   Error Handling 

To a certain extent,  ELI is designed to minimize the occurrence of 

errors,  by carrying out the intent of a program even when it is literally 

incorrect.    For example,  if p is a pointer to an intp,   np[i]"   is nonsense 

if construed by a strict evaluator,   for p has no components.    However, 

the form will be interpreted in ELI as  "val(p)[i] " to no one' s   loss. 

Whenever a moderate dilation of language provides compact and unambiguous 

notation,  it is permitted.    For many cases,  the best sort of error handling 

lies precisely in extending the evaluator such that constructs which would 

otherwise be errors become well-defined.    ELI currently goes some 

distance in this direction; as experience with the language and its common 

errors is gained,  further latitude will be admitted. 
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There are,  however,   some cases in which the evaluator cannot handle 

a form.    All such cases are processed in a uniform fashion.    A check is 

made to see if there is a programmer-defined procedure for dealing with 

that class of errors.    If so,  the procedure is called and the value of that 

prDcedure is taken to be the value of the form which caused the error.    If 

no such procedure exists,  an error message is output and implementation - 

defined action is taken to effect recovery. 

External interrupts will be handled in the same fashion.    Although the 

language presently has no external interrupts,   we assume that its appli- 

cation in fields such as graphics will require their addition.    When they 

are added,   the interrupt handler will operate like the error handler: it 

will first check for a programmer-defined procedure for that interrupt 

class (e.g. ,   "light-pen-interrupt") and failing that will execute a system 

procedure. 

In the case of errors or external interrupts,   the programmer-defined 

procedure is identified by name  and may be changed (e. g. ,  by assignment) 

in the program being evaluated.    This avoids need for a special scope rule 

and control mechanism as,  for example,  with the ON statement of PL/I 

[lBM66a] . 
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Section 4.   SEMANTIC  FOUNDATIONS 

In section 3, the language ELI was informally presented;  in section 5, 

a formal definition will be given.   In this section,  we discuss a number of 

topics on which the formal definition depends but which are not formally 

defined.   We thereby supply the foundations on which the formal definition 

is based.   These topics include (1) the representation of programs used by 

the evaluator,  (2) the relation of this to the source text,  (3) the storage 

management system used by the evaluator.   We also treat one meta-issue: 

the linguistic circularity resulting from the method of semantic specifi- 

cation employed in the formal definition. 

4.1   ABSTRACT  SYNTAX AND ITS RELATION  TO CONCRETE  SYNTAX 

As discussed in section 2.1.3, the notion of abstract syntax was intro- 

duced by McCarthy as a method of directly describing those properties of 

a program which are of interest to an interpreter.   McCarthy1 s scheme used 

predicates,  functions true of specific classes of program objects,  and 

selectors,  functions which project out a component of a program object. 

To these two,   Landin [Land64] added a third class of functions, 

constructors,  which create program objects of specified type.   Later, the 

Vienna model of PL/l [Luc68] appropriated the term "abstract syntax" to 

describe a scheme which allowed only predicates,  but with an embellished 

format suited to the  metalanguage employed in the model. 

From this diversity of usage,  the term "abstract syntax" has come to 

refer generically to formalisms for describing the underlying structure of 

a program.   It is used specifically in opposition to "concrete syntax" (e.g., 

context-free grammars, type-2 grammars) which describe the written 

appearance of a program.   As a single concept can be represented in many 
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notational forms,  a single abstract syntax may correspond to many concrete 

syntaxes,  possibly quite dissimilar.'    For our purposes, the relevant dis- 

tinction is that a concrete syntax describes the external representation (i.e., 

string text) of the source program,  while the abstract syntax describes an 

internal representation more amenable to the process of evaluation. 

The external representation of ELI is a context-free language.   This is 

specified using a formalism which generates the context-free languages but 

provides a number of augments to the notation of context-free grammars. 

The formalism will be touched on in this section and treated fully in section 

5.1.1.   The abstract syntax of ELI is expressed using the mode definition 

facilities presented in section 3.9. 

In an abstract syntax there are three logical concepts to be expressed: 

(1) the notion of compound objects containing a fixed number of components, 

e.g.,  a clause (c.f. §3.7) consists of a test which is a form and a conse- 

quent which is a form; 

(2) the notion of compound objects containing an indefinite number of com- 

ponents,  e.g.,  a compound form consists of zero or more statements; 

(3) the notion of alternative formats for a single syntactic type,  e.g.,  a 

statement is either a form or a clause. 

These three concepts are represented by three mode sub-classes: struct, 

length unresolved row, and united ptr. For example, corresponding to the 

three illustrations above we have the three abstract syntax definitions 

(1) clause   t=   STRUCT (test: form,   consequent: form) ; 

^ For example, the addition of x and y can be denoted by:     x + y,    + xy, 
+ (x, y),   (PLUS X Y),   plus [x; y] ,  etc.    Each of these has a different 
concrete syntax. 
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(2) compound ..form   4=   ROW (statement) ; 

(3) statement   <=   PTR (form, clause) ; 

Representation of compound objects containing a fixed number of com- 

ponents is relatively straightforward.   The STRUCT definition is not very 

different from the description in English.   Further, this corresponds 

directly to context-free concrete grammars where the right part of a pro- 

duction consists of a fixed number of elements.   For example, the concrete 

syntax for clause is 

clause    -*-    form   =»    form 

Here,  the concrete and abstract syntaxes differ in only two ways.   (1) The 

components in the definition part are named in the abstract syntax but not 

in the concrete.   (2) Delimiters such as "=>"   which serve as punctuation in 

the concrete syntax have no counterparts in the abstract syntax. 

Turning to the notion of compound objects containing an indefinite number 

of components,  we begin by observing that a special representation is not 

absolutely necessary.   For example,  a compound form could be defined as 

a linked list of statements;   such a definition would require only STRUCT 

and PTR.   However,   such a representation is at best indirect.   A sequence 

of components logically corresponds to the notion of ROW; hence,  the 

chosen representation. 

Regretably,    there   is   no   corresponding   notion   in   context-free 

grammars.   Using a context-free grammar,  one is forced to use the concrete 

analogy of a linked list;  i.e.,  a recursive definition such as 

compound.form   -*   BEGIN   compound.body   END 

compound.body    -*   empty | statement;    compound_body 

Such representation is counter-intuitive and becomes quite clumsy when 
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used with any frequency.   Consequently,  in our specification of concrete 

syntax we use a variation on notation'  introduced by R. Floyd [Floy63] and 

write 

compound_form   -*   BEGIN {statement; }®    END 

which may be read as:   a compound form consists of the symbol BEGIN, 

followed by zero or more statements separated by semicolons; followed 

by the symbol END.   To summarize,  an indefinite number of components 

of the same syntactic type is represented in the abstract syntax by a row, 

and. in the concrete syntax by a special notation using the meta-symbols 

"{",  "}", and  "®". 

Alternative formats for a syntactic type are represented in concrete 

syntax by alternative right parts of a production,  for example, 

statement   -»•   form | clause 

Representation of this notion in the abstract syntax is somewhat indirect. 

For example,  consider the abstract type statement which is either an 

abstract form or an abstract clause; the potential choice could be repre- 

sented in Algol 68 (c.f. §2.2.2) by 

mode  statement   =   union (form,  clause) 

This would be a reasonably direct rendering of the English description. 

However,  ELI does not have the general concept of union.   Instead,  we 

interpose a pointer and define a statement to be an object which can point 

to either a form or a clause. 

'The meaning of this notation should be clear from context.   A precise 
definition is given in section 5.1.1. 
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It might appear that the representation we have chosen is wasteful when 

compared to one based on union.   However,  this is not the case.   Most uses 

of alternative formats involve recursive definition,  either directly or in- 

directly,   in the concrete syntax.   In such cases, the union definition will not 

work,  for the syntax recursion implies a recursive mode and a  pointer 

must be used (c.f. §3.15).   Even where the union definition could be used it is 

generally undesirable,  for it tends to waste storage — more than that wasted 

by the pointer.   If a statement is represented as the union of form and 

clause,  the storage for a statement must be large enough to hold either of 

its alternatives; this storage will be required even when the smaller alterna- 

tive occurs and the remainder will be wasted.   The waste results from the 

binding which a union leaves open even after the relevant choice has been 

made. 

One additional difference between the abstract and concrete syntaxes 

of ELI should be noted.   The former is expressed in the formalism of the 

language;  the latter is not.   Hence,  while an abstract program is a legiti- 

mate data object of the language,  a concrete program is not.   The formal 

definition given in section 5 assumes that all programs have been previ- 

ously translated from concrete to abstract form.' 

The translation is carried out in two phases:   (1) parsing the source 

text into the generation tree specified by the concrete syntax,  (2) producing 

from this generation tree the equivalent object defined by the abstract 

'We could,  of course,  define a source program as a string (c.f. §5.5.3), 
define a generation tree as another data type,  and write the parser and 
translator as procedures in ELI.   We have decided against doing so here in 
order to avoid dilution of this work by issues incidental to its central 
thesis. 
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syntax.   The first phase is outlined in section 4.3.1; the second is treated in 

section 5.1.3.   Lest a misconception arise,  we wish to point out that these 

two phases are conceptual entities, not chronologically sequential passes. 

That is,  it is not necessary to grow the entire parse tree before producing 

abstract program; as portions of the tree are completed, they may be indi- 

vidually transformed. 

4.2   LINGUISTIC  CIRCULARITY 

As the meaning of programs written in ELI is defined by an evaluator 

also written in ELI, there is a direct circularity in the semantic specifi- 

cation.   In this section,  we explore the circularity and its consequences. 

From a utilitarian standpoint, there is little problem.   As pointed out 

by McCarthy [McCar66]  and Minsky [Mins69]  such a definition,  while circu- 

lar,  is quite useful.   To understand the language one needs only to know the 

workings of a single program, the evaluator,  not all implications of all 

possible programs in the language.   By concentrating on a particular pro- 

gram, the complexity is reduced by several orders of magnitude.   For 

example, the language can be communicated (e.g., to an implementor or a 

standards committee) by means of this particular program.   As it is far 

easier to explicate and deal with a single program than the set of all 

possible programs, the advantage is non-trivial. 

An argument based on utility, however,  addresses itself to only part of 

the problem.   There remains a lurking doubt as to whether the circularity 

is logically admissible.   While the doubt cannot be altogether dispelled,  we 

car clarify the issue. 

In a strong sense,  such circularity or its equivalent is inescapable.   To 

define the meaning of a language £,  it is necessary to use a metalanguage £r. 
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How then to define £f ?    Either (1) £' is the same as £,  (2) £' is so simple 
2 

as to require no further specification,  or (3) £f must be defined by a meta  - 

language £".   The third choice merely repeats the problem with £  replaced 

by £';  while it may be practically advantageous to do so and thereby descend 

one or more semantic levels, the logical problem remains unchanged.   Hence, 

circularity can be avoided only if the second alternative is employed. 

A definition based on a metalanguage so simple as to require no formal 

specification presents some difficulties.   While such languages do exist,  e.g., 

the order code for a simple Turing machine,  they are semantically very 

formal specification. 
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remote from those we wish to describe.   To bridge the distance, the 

semantic specification must entail piling many levels of definition,  one upon 

another.   Such a tower,  while acceptable to an automaton,  would be virtually 

useless for human consumption,   so useless that serious doubts concerning 

its correctness would be justified.   It must be appreciated that a semantic 

specification,  like a mathematical proof or a computer program,  must be 

debugged.   This entails a referee and imposes the requirement that the 

specification be intelligible;  a non-trivial requirement.   Further,  the cas- 

cading of definitional levels upon a simple base such as a Turing machine 

has a second difficulty.   When applied to a program, the definition may 

yield the right answers but seriously misrepresent the process whereby 

these answers are obtained.   We postpone to section 7.3 a general dis- 

cussion of the validity of such misrepresentations.   Here,   we simply note 

that such models will give a seriously distorted picture of the language 

mechanisms and hence will be useless in language design or discussion 

of design.   On the other hand,   it is unlikely that a metalanguage much 

more complex than a Turing machine is truly so simple as to require no 



In short, there are good reasons to believe that an attempt to define a 

non-trivial programming language in terms of a self-evident metalanguage 

will either founder upon the complexity of definition or end up using an un- 

acceptably complex metalanguage, thereby violating its constraints.   Hence, 

a circular definition is unavoidable.   The relevant question is therefore not 

whether to admit a circular definition, but how to make it palatable.   Specifi- 

cally, the issue is where the circularity should lie.   One could, for example, 

define the source language £ in terms of some simpler metalanguage £     and 

£     in terms of itself.   Alternately,  one could employ a symmetric scheme: 

define £ in terms of a metalanguage £      and £     in terms of £.   Many other 

schemes and variations present themselves; choice among these depends in 

large measure on the language being defined. 

In the case of ELI, there are compelling reasons for the use of direct 

circularity.   As a base for an extensible language,  ELI is to be as simple 

as possible,  consistent with the goal of spanning a certain semantic space. 

If ELI could be satisfactorily defined in terms of some simpler language 

£m tnen £m' not EL1' would be the appropriate base language.   With such 

considerations in mind,  we designed ELI to be close to the minimal fixed 

point of its space.    Notions which could be specified in terms of other notions 

were,  with few exceptions,   excluded.    These exceptions are primarily em- 

bellishments added to ELI so that it serves as a fluent metalanguage for its 

s elf -des er iption. 

Several useful consequences arise from this self-description.   When 

learning the language,  one learns language and metalanguage simultaneously, 

avoiding the significant difficulty of learning two new languages at once. 

Also, when metaphrase extensions (c.f. §1) are made, they are written in 
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the language itself with obvious attendant benefitsJ    Finally,  identity of 

language and metalanguage has implications in the field of proving proper- 

ties of programs.   Suppose we have strong proof techniques and are able to 

prove properties of algorithms expressed in the language.   These proof 

techniques can be used in particular to prove properties of the evaluator 

and hence of the language as a whole.   Such proofs may be an additional 

handle on language semantics,   providing a static counterpart to the pro- 

cedural and therefore dynamic evaluator. 

4.3   THE  UNDERLYING SYSTEM 

4.3.1   Parsing 

The first phase in translating an ELI source program into internal 

representation entails parsing it into its generation tree as specified by 

the concrete syntax.   The problem of parsing has been one of the most 

intensively studied areas of computer science and reasonably satisfactory 

techniques are known.   Consequently,  we shall only outline the parse 

method and refer the interested reader to the relevant literature. 

Parsing may be conceptually divided into two stages:   lexical analysis 

and syntactic analysis.   (See [Chea67]  for a complete discussion of this 

division and the place of these two stages in a compiling system.)   Lexical 

analysis consists of accepting a string of characters,  breaking this string 

into tokens (e.g.,  identifiers,  numbers,  and delimiters),  and out putting a 

'The reader who questions the significance of such benefits is invited to 
contrast the operator definitions of MAD (c.f. pp. 104-107 of [Ard64]) as 
given in pseudo assembly code with an equivalent rendering in MAD. 
While the definitions are quite transparent when written in MAD,  they 
present a formidable intellectual challenge in pseudo assembly code. 
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sequence of token descriptors.   Syntactic analysis consists of identifying 

syntactic units in the token descriptor sequence and constructing some 

suitable representation of the parse tree.   These two stages can in principle 

be rendered as two sequential passes,  but it is far more efficient to use two 

procedures connected as coroutines.   (For a discussion of coroutines,  see 

section 1.4.2 of [Knu68].)   In the latter case, the syntactic analyzer calls 

upon the lexical analyzer each time it requires a token. 

Construction of a lexical analyzer from a specification of concrete 

syntax is discussed in [John68] .   Only one point requires discussion here, 

that being the form of token descriptors.   In internal representation,  an 

identifier is represented by a pointer to a symbol table entry (c.f. §5.5.3). 

Since the symbol table is available at all times,  it can be employed in 

parsing; the descriptor of an identifier is a pointer to its symbol table entry. 

The descriptors of tokens belonging to other classes are pointers to tables 

used only in parsing.   For example, the descriptor for a constant is a 

pointer to a literal table which contains the type and value of that constant. 

We intend that syntactic analysis be carried out using Earley's algorithm 

[Earl68] .   ELI as it currently stands could be parsed by a number of faster 

special-case methods (c.f. [Chea67] or [Feld68] for a discussion of such 

methods) or by a hand-tailored algorithm.   However,  it is our intention that 

a facility for syntactic extension be added to ELI in constructing a complete 

language core (c.f. §9.2).   This facility will be quite general;  i.e.,  any 

extension to the concrete syntax which can be expressed as a context-free 

language will be acceptable.   Hence, we will eventually require a completely 

general context-free parse algorithm;  it seems wise to provide for the 

general case at the outset. 
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Of those algorithms able to parse any context-free language,  Earley!s 

appears to be the best (c.f. chapter 16 of [Earl68]).   Hence,  we have elected 

to use it.   As the concrete syntax of ELI is quite simple, the algorithm will 

run in time proportional to the length of the program,  with a reasonable 

constant of proportionality. 

4.3.2   Storage Management' 

In section 3, the issue of storage classes appeared several times but 

was glossed over in the interest of initial simplicity.   In particular,  no dis- 

tinction was made between different types of storage and storage behaviors. 

Here we take up the issue of storage classes and discuss their implementation. 

An object in ELI belongs to one of three storage classes: 

(1) stack-objects,  for example the  x in 

DECL   x : int; 

y   -   x; 

(2) heap-objects,  for example the value of val(p)  in 

p   *-   allocate (intp,  (   )); 

v   «-   val(p); 

(3) pure-values,  for example the value of 

y+i 

The first two of these are referred to generically as proper-objects. 

'It should be pointed out that this discussion is largely confined to storage 
management for objects which appear explicitly in the language.   System 
objects such as I/O buffers and the interpreter code are dealt with only in 
passing. 
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The three classes are defined and handled as follows: 

(1) DECLared variables and most* formal parameters are stack-objects. 

Such objects exist only during activation of the procedure in which they 

are created; when the procedure exits, the objects are destroyed. 

Hence, their storage can be managed as a LIFO (last-in-first-out) stack. 

(2) Objects created by a call on the procedure allocate are heap-objects. 

They exist so long as any pointer references them.   Dynamic allocation 

from a storage pool provides blocks to hold these objects; when neces- 

sary,  garbage collection returns to the pool those blocks no longer 

referenced. 

(3) A pure-value is an ephemeral object,  momentarily arising as the result 

of some calculation such as ny * xn,  or "determinant (a)n.   Since the 

evaluation of an ELI program takes place serially, there can be at most 

one pure-value at any given time.   Hence,  pure values reside in a single 

block of storage which is used as a degenerate LIFO stack holding at 

most one value.   Whenever a pure-value is created, any previous pure- 

value is destroyed. 

In terms of spanning a semantic space, heap-objects form the most 

general storage class and subsume the others.   We could abolish the other 

two classes and implement their objects as heap-objects with no loss of 

'Specifically,  a formal parameter is always stack-managed under either of 
the following conditions:   (1) it is declared to be bound BYVALUE or 
UNEVALED,  (2) the argument is a pure-value.   The remaining case — 
when the binding is declared BYREF and the argument is a proper-object — 
is sometimes stack-managed.   In this case,  the binding merely links the 
formal name to the argument; hence the storage class of the formal 
parameter is that of the argument object.   This may be either stack or 
heap,  depending on how the argument was created. 
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language features.   Instead of explicit destruction of objects at procedure 

exit, the system would merely wait for a garbage collection.   The two 

stack classes are introduced only to gain efficiency.   However, these gains 

are considerable.   Compared to use of a stack,  garbage collection is slow, 

particularly when memory becomes full (for example,  c.f. section 2.3.5 of 

[Knu67]).   For those variables which are created and destroyed in strict 

LIFO order,  the use of a garbage collector invokes a needless waste one 

can ill afford. 

This holds a fortiori in a two-level storage system;  i.e.,  where the 

address space is not held entirely in core but rather kept on a bulk device 

and brought into core in segments by software or hardware paging.   Time 

required to access data on a segment not in core is typically four orders of 

magnitude greater than the time for an in-core access [Coh67],   [Bobr67a] . 

Hence,  garbage collection is slower and the storage fragmentation induced 

by a garbage collection system,  but avoided by a stack, is more costly.    Use 

of a stack insures that all objects having the same scope reside in a con- 

tiguous portion of the address space.   Hence, they will be brought into core 

together.   Since they will in general be used together,  the use of a stack 

causes an effective compactification.' 

Implementation of a LIFO stack,  either for the stack-objects or the 

pure-values,   is relatively straightforward and will not be discussed here. 

(The reader may consult [Dijk60] and [Ros66].)   We shall,  however, 

examine the more difficult issue of heap implementation. 

'We note in passing that the benefits of additional compactification may in 
many cases be a good reason to pass arguments BYVALUE (c.f. §3.12) when 
their lengths are smaller than the segment size.   If this cuts down the work- 
ing set sufficiently that it fits into core where otherwise it would not, the 
cost of copying is far outweighed by the savings produced by not making out- 
of-core segment references. 
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The basic technique is simple.   Some part of the address space is used 

for the heap;  storage in the region is said to be initially free.   All requests 

for heap storage arise from calls on allocate,  e.g., "allocate (m, d)M  where 

m is a mode and d is an intp used as a dope-vector.   From m and d the 

number,  n,  of storage units required is computedj   A block of n units is 

removed from the free region and a pointer to it is returned as the value of 

allocate.   The block is then said to be reserved.   After some time, the heap 

will have become completely reserved by this process.   It will be found that 

the next request for storage cannot be satisfied.   This causes a garbage 

collection which reclaims all blocks which were earlier reserved but are 

no longer referenced,  i.e.,  effectively no longer in use. 

The first point to be noted is that there are several ways in which the 

address space allotted to the heap can be obtained.   (Note,  also, that it 

need not be a contiguous block.)   The region can be either fixed as in 

CORAL [Rob65]  and AED [Ross67],  or it can be allowed to grow by making 

calls upon a higher level storage allocator.   In the latter case, the higher 

level allocator may be either the operating system or a global allocator for 

the sub-system.   A fixed region scheme is simplest to implement but has 

little else to recommend it.   Different programs will make widely differing 

demands upon the heap size,  demands which will in general be known only 

during program execution.   Hence, there is strong motivation to allow heap 

growth,  particularly since randomly scattered blocks are usable in forming 

the heap.   Calls upon the operating system for additional storage make sense 

^Note that this quantity is implementation dependent, for it is a function of 
the bit pattern representation of the primitive data types.   It is not even the 
case that n1 > n« in one implementation implies n.. > n« in all. 
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only when the address space allotted to a sub-system is less than its 

potential address space.   This may occur in either an in-core address space 

as on an IBM 360 [IBM66b] ,  or a two-level memory system as in Lisp 1.85 

[Bobr68] .   When the condition holds and calls upon the operating system are 

possible,  this method allows the most flexible distribution of resources to 

competing tasks.   When this is not possible,  global storage management by 

the sub-system allows some trading between the heap and other pools, 

resulting in somewhat better performance than the fixed region scheme. 

One critical issue of heap management is how a free block of the desired 

size,  say n storage units,  is to be found.   After a number of garbage col- 

lections, the free blocks of the heap will be scattered throughout its extent. 

It is necessary that the heap be so organized that a block of size n can be 

readily found whenever such a block exists.   There are several techniques 

for this organization. 

Knuth [Knu68]  discusses use of a single list of all free blocks,   sorted 

according to starting address.   To obtain a block of size  n,  the list is 

searched until a block of size  m ^ n is found.   If m > n,  the block is split 

and the excess is returned to the free storage list;  if m = n,  the block is 

used directly.   To spread out the appearance of fragments split off from 

larger blocks by this process,   search to satisfy a request is started not at 

the head of the free list but at the point where the previous search stopped. 

This scheme is designed to allow efficient operation in a system where 

blocks can be explicitly freed; a single,  sorted list is used so that a freed 

block can be merged with the blocks above and below it,   in the event that 

these blocks are free.   Where,  as in ELI,  explicit freeing is not allowed 

this scheme can be improved by keeping separate lists for various block 

sizes,   say one list for all blocks falling between each power of two; this, 
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of course,  cuts down the search.   A fragment split off from a block larger 

than the request size is placed on the list appropriate to its size. 

It is possible to go further and completely avoid search for a sufficiently- 

large free block by rounding up all requests such that they become a power 

of two.   Satisfying a request is then carried out by taking the first block 

from the appropriate list or,  should this list be empty, breaking a block 

from the next higher list in half.   This scheme may be attractive in a two- 

level storage system where a search may entail several expensive refer- 

ences to secondary store as the pointer chain is followed.   However, unless 

the address space is very large, the waste produced by rounding up (typically, 

25%) will make this too expensive.   Also,  it has the further disadvantage that 

with this scheme it is difficult for the garbage collector to reclaim part of 

block.   Hence, for our purposes, the multilist scheme without rounding up 

is preferable. 

The AED free storage package [Ross67] uses a rather different tech- 

nique.   The heap is divided into zones,  each having its own allocation strategy 

and management technique.   Zones may be divided into sub-zones,  called 

sons,  in standard hierarchial fashion with usual genealogical terminology 

for the relations.   The use of zones is intended to gain efficiency from 

exploiting a common phenomenon:   a program typically uses only a small 

number of modes and has few distinct block sizes which are used with great 

frequency,   some only during specific time spans.   If each block size is 

handled by a specific zone,  there is less expense due to breaking and re- 

combining blocks and less problem of storage fragmentation.   The AED 

system provides explicit and detailed control over the creation of zones, 

the strategies they use for storage allocation and compactification,  and the 

allocation of blocks from specific zones.   While most of this control is too 
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fine to expose in ELI,  much of the AED strategy could be used hidden behind 

the simple call on allocate.   It might be possible for the heap management 

system to keep statistics on the program,  determine what block sizes are 

in use,  and set up special zones for the most common sizes J   Whether the 

savings induced by zoning pay for the mechanics of creating it can only be 

decided by experience and will depend very heavily on the program being 

run.   We assume that implementations will initially adopt the single-zone- 

multilist scheme and add provision for special zones as need for them 

arises. 

The next point to be considered is gargage collection. In outline, this works 

as follows.  Starting from base positions (e.g., re suit-slot and value-stack, 

c.f. §5.3.5) all pointer chains into and within the heap are traced, and all 

objects so encountered are marked.   Since these objects are not homoge- 

nous,  and the data type of an object is not stored with the object,  it is 

necessary to keep an address and a mode for each pointer.   (In ELI terms, 

the tracing is carried out using PTR-ANYs.)   This is straightforward,  for 

one can immediately determine the mode of objects in the base positions; 

further,  given the mode of an object Ü,  one knows the modes of its com- 

ponents and therefore the modes of the objects to which the components 

(or € in the case of a single pointer) may point.   The only non-trivial point 

'One particularly nice technique for implementing a (non-hierarchial) zone 
system is a quantum map.   The address space is divided into segments 
whose size is some power of 2.   A table,  called the quantum map,  is kept 
in which the i*n entry describes the i™ segment of the address space.   In 
particular,  the descriptor may include a zone type.   The point of this 
arrangement is that given a pointer the descriptor and hence the zone type 
may be accessed in but a few machine operations (e.g.,  load the pointer 
into an index register,  right shift,  and fetch indexed).   Note also that the 
quantum map may be used in global storage management,   some segments 
being allotted to the heap, some allotted for buffers, and others unallotted. 
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is that row modes may be length unresolved,  in which case it is necessary 

to access the length field(s) which is stored with the object. 

In marking objects as being in use,  it is necessary to use a bit table 

for those objects (e.g., integers) which occupy a full word.   Garbage col- 

lection is made easier if the bit table is used for all objects.   Each word 

of the heap is represented by a bit;  marking an n-word object as being in 

use entails setting n bits to 1. 

Having marked an object  O, the garbage collector traces all pointers 

in Ü.   While tracing the descendants of C stemming from one pointer,  it 

is necessary to remember O so that the garbage collector can later return 

to it and trace from the other pointers.   There are two methods of doing 

this,  depending on whether ^!s are remembered by (1) using a special 

stack,  or (2) reversing pointers using the method of Schorr and Waite (c.f. 

section 2.3.5 of [Knu68]).   By omitting the need for reserving a special 

stack, the latter allows a somewhat larger heap.   However, as the number 

of objects to be so remembered rarely gets large in practice, the gain may 

be negligible.   The objection to the second method is that it runs about four 

times slower than the stack technique [Sch67] because it visits each node 

several times as often. 

In view of its superior speed,  we have chosen to use the stack method. 

Before tracing a pointer & belonging to an object C\ the garbage collector 

stacks a triple consisting of the location of   C, its mode, and which pointer 

in 0 will be traced next,  if any.   When all the descendants of 0* are pro- 

cessed, the stack is popped and tracing continues with the next pointer in 0. 

Having thus marked all structures in the heap which are referenced, 

the garbage collector enters its second phase.    It makes a linear sweep of 

the bit table:   a sequence of n   &ls corresponds to a sequence of n 
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unreferenced words.   Each such block is returned to the free storage pool 

by linking it into the list of free blocks appropriate to its size.   Its actual 

length (i.e.,  n) is recorded in the first word of the block,  except in the case 

of single and double word blocks. 

It will be noted that the above garbage collector does not perform 

compactification,  i.e.,  moving objects while altering pointers to preserve 

topology so that the free space becomes one contiguous block.   By not com- 

pactifying,  we run the risk of failing to satisfy an allocate request because 

the free storage while great enough in total is fragmented into blocks,  each 

too small to satisfy the request.   Simulations [Rand69]  and  [Rob65]   indicate 

that under conditions involving blocks of random size,  the effective loss in 

storage due to fragmentation is on the order of 10 to 15%.   To the extent 

that in practice blocks tend to fall into a small set of fixed sizes,  this 

figure will be correspondingly lower.   The use of a zone mechanism would 

cut this still further.   While 10 to 15% is hardly negligible,   such a loss may 

be acceptable,  particularly in early implementations.   It may prove desirable 

to later add a compactifying garbage collector using the technique employed 

in Lisp 2 [SDC67] .   Alternatively,  if the address space is extremely large, 

it may be profitable to divide the heap into two semi-spaces,  use only one 

at a time,  and compactify by copying from the one in current use to a con- 

tiguous region of the other,  as in [Fen69] . 
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Section 5.   THE FORMAL DEFINITION OF ELI 

This section gives the formal definition of the programming language 

ELI.   The written representation used throughout is that of the reference 

language.   Implementations may choose to use a different hardware repre- 

sentation by modifying the concrete syntax (c.f. §5.1.1). 

Section 5.1 explains the notation used in defining the language.   Some 

preliminary issues concerned with written representation are treated in 

section 5.2.   Sections 5.3 to 5.13 present the various constructions of the 

language; auxiliary routines used in these sections are listed in section 

5.14.   Finally,  sections 5.15 and 5.16 list primitive and builtin procedures 

of the language. 

5.1   FORMALISM FOR THE DEFINITION OF ELI 

5.1.1   Formalism for Concrete Syntax 

The concrete syntax specifies the external or written representation of 

the language.     It is defined using a formalism related to context-free 

grammars.   The reader may consult any of the standard references 

(e.g.,  [Gins 66] or [Feld 68]) for a discussion of the latter; an elementary 

knowledge of this material will be assumed.   We shall use the basic defi- 

nitions and notation found in these sources with one exception:   we denote 

the full vocabulary, terminal vocabulary,  and nonterminal vocabulary by 

y,  <TT,  and TTN. 

The formalism we employ extends the usual notation for context-free 

grammars to permit more compact and readable definitions.   However, the 
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extension is in notation only; the formalism generates precisely the context- 

free languages.   The differences from standard context-free grammars are 

as follows: 

(1) Nonterminal symbols may be denoted by strings of characters.   Hence, 

all symbols in Y are delimited by blanks on either side. 

(2) A production of the form 

B-ai|a2|...|an 

where B € y.^. and a. e 'V    for i = 1, ..., n may be written as an abbrevi- 

ation for the set of productions 

B — ax,  B — a>2,   . . . ,  B — <*n . 

The nonterminal,  B,  defined by such a production is said to be the left 

part; the a.'s are said to be alternative right parts. 

(3) A production of the form 

B - «i { «2 } a3 

is an abbreviation for the productions 

B - «i C "3 

C - a2 | e 

where  C  is a new nonterminal used in no other productions and  e is 

the empty string. 

(4) A production of the form 

is an abbreviation for the productions 

B — a^ C <*3 

C — e | a2 C 

where  C is a new nonterminal. 
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(5)    A production of the form 

B^"l{*2}
+flr3 

is an abbreviation for the productions 

B - a, C öo 

(6) A production of the form 

B -^{ag a}® a3 

where a-, #2, a?3 e V  ,  a € yT,  and B e ^N,   is an abbreviation for 

B — a. C c*3 

C — e I <*2 I <*2 a C . 

(7) A production of the form 

B - a1{a2^ a3 

where a-, a2, #3 e ^   , a e y^T, and B e y^N,  is an abbreviation for 

B — ax C <*3 

C — <*2{a}| or2 a C. 

To summarize, the formalism uses eight special marks:     — {      } 

*      +     ©      © .   The right-pointing arrow is used,  as in standard context- 

free grammars,  with the meaning:   rewrites to.   The vertical bar indicates 

alternative right parts of a production.   The braces are used to group 

portions of a right part,  possibly in conjunction with the other four marks. 

The raised star means:   none or more.   The raised plus means:   one or 

more.   Enclosing either of these in a circle indicates that the final symbol 

of a substring is optional. 
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5.1.2   Examples of the Formalism for Concrete Syntax 

(a) The grammar given by 

nest — a nest d {d} | c 

generates the language 

{ancdm|n* m* 2n}. 

(b) The grammar given by 
r       -,+ item -{qr} 

generates the language whose strings are 

qr      qrqr      qrqrqr     ... 

(c)    The grammar given by 

block — ( {  segment , }    ) 

segment — b 

generates the language whose strings are 

(    )     (b)     (b,)     (b,b)     (b,b,)     (b,b,b)    . . . 

5.1.3   Formalism for Abstract Syntax 

The abstract syntax specifies the internal representation of programs. 

It is defined using the data-type definition mechanism of ELI (c.f. §3.9). 

In general, to each definition ^ of a nonterminal & in the concrete syntax 

there corresponds a definition @    of some data-type 5"    in the abstract 

syntax. 

On input to the evaluator, the external representation of a program 

is transformed into its internal representation as follows.     Let & be an 

instance of a concrete nonterminal ST.    & is first parsed into its generation 

# # tree;  then this tree is mapped into a data object &   of type  *T  .   The object 

&    is the internal representation of the external object &. 
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In general, a generation tree headed by V can be mapped into an 

# # object   &     of type T   by recursively mapping the branches of the tree 

„nto the components of & .    More specifically, this mapping is determined 
M 

by the correspondence between the abstract definition 9    and the concrete 

definition ^.   The following schemata are usually employed: 

(1)   A production of the form 

A -* a. \ a0    . . . \ a n > 2 
1 '    I ' ■    n 

usually corresponds to the definition 

A#   <-   PTR(aJ,a* aj). 

The i     alternative in the concrete syntax is represented by the abstract 

type  PTR(^). 

(2) A production of the form 

A~XlX2...Xn        (X.ef) 

usually corresponds to 

A#   «=  S(Nj : xj ,   N2 : x\ ,   . . .,   Nn : xj) 

where the N.!s are names for the components. 

(3) A portion of a concrete right part having the format 

{X}*       where   X e^ 

usually corresponds to 

R(X#). 

Usually, the correspondence between concrete and abstract syntax is 

obvious.   Where it is not, the correspondence is explained in a note. 

5.1.4   Formalism for the Evaluator 

The evaluator specifies the meaning of the language. The evaluator £ 

for a concrete syntactic type 2T specifies how instances of that type are to 

be evaluated.   Specifically, £ takes as input an object of type ST    and 
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delivers as output a pointer to the result of evaluating that object,  i.e., 

a pointer to its value. 

The meaning of a program in the language is specified by the evalu- 

ator for the syntactic root program.   This calls evaluators for simpler 

syntactic types which in turn call each other and the evaluators for primi- 

tives.   The evaluator for each of the primary syntactic forms is listed with 

the concrete and abstract syntax for that form in sections 5.3 to 5.13.   The 

evaluators for the linguistic primitives are discussed in section 5.15. 

The evaluators are themselves procedures written in the language ELI. 

Wherever practicable, they avoid advanced features of the language and 

perform their operation as clearly and simply as possible.   Consequently, 

they are in general not locally optimized,  particularly with regard to 

common subexpressions and the occurrence of loop invariant computation 

within a loop.   Where it was thought that a point might be unclear,  a 

comment (c.f. §5.2.3) was added.   Comments always appear before the 

procedure text to which they apply. 
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5.1.5   Initial Values Used by the Evaluators 

The mode constants for the primitive data types in ELI are denoted 

by strings of upper-case characters, for example:   INT,  BOOL,  CHAR 

(c.f. §5.9.1).   In the text of the evaluators,  it has proved desirable to 

minimize use of upper-case characters so as to avoid "shouting".   Hence, 

identifiers (written in lower case) having equivalent spelling are defined, 

initialized to the primitive mode values,  and used in place of the mode 

constants.   That is, the evaluators use the following initialized identifiers: 

DECL int,  bool,  char,  none,  ptr . any : mode ; 

int   *-   INT; 
bool   *-   BOOL 
char   -   CHAR 

none   -   NONE 
ptr.any   -   PTR.ANY; 

Also, the evaluator (§5.3.5) assumes that three integer-valued 

variables,  name-pdl-length, value-stack-size,  and result-slot-size, 

exist having values which specify the size of three system stacks. 

5.2   WRITTEN REPRESENTATION OF PROGRAMS   -   PRELIMINARIES 

5.2.1   Character Set 

digit —  0|l|2|3|4|5|6|7|8|9 

upper, case, char -* A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R| 

S|T|U|V|W|X|Y|Z 

lower.case.char -*a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t| 

u |v | w|x|y |z |p |. 

break, char - ( |) | t | . | [ | ] |; |-> | [ | ] | : | < | ) | <= |, | @ 

separator, char — £ 
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Special.char  —  =|=Jfc|^|>|<|^| + |-|*|/|-|°|v|A|!|#|$|%|&|?|t 

string, char  — digit | upper „case _ char | lower, case, char | break, char | 

separator .char | special, char 

character  —  string, char | " 

5.2.2 Blanks 

A blank (denoted above by "*>") is a separator character.   That is,   its 

appearance separates two syntactic units (e.g.,  identifiers or numbers   — 

c.f. §5.4.1,   5.5.1) but it is not itself a syntactic unit.   Other than serving 

as a separator,  blanks have no significance and may be used freely to 

enhance  readability. 

5.2.3 Comments 

A comment may be inserted into a program by enclosing text between 

the brackets "COMMENT" and " ; " . The delimiter MNT" may be used as 

a left bracket in place of "COMMENT".   For example: 

COMMENT   A comment begins with either the delimiter "COMMENT" 

or the delimiter "NT" and ends with a semicolon; 

NT   A comment cannot contain an embedded semicolon; 

The delimiter "ELSE" also serves as a comment;    it may be inserted 

wherever useful to make clear the meaning of a program. 

A comment acts as a separator character,  like blank.   Consistent with 

this convention,  comments may appear anywhere in a program. 
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5.3 PROGRAMS, FORMS, AND THE ENVIRONMENT 

5.3.1   Concrete Syntax 

program — form 

form —> form2   binary, operator   form | form2 

form2  —► constant! identifier I compound .form | iteration I m. form I 

selection | aggregate | procedure .application | ( form ) 

5.3.2   Examples 

Refer to §5.i.2 for i = 4, . . .,   13. 

5.3.3   Abstract Syntax 

form «= PTR(binary.operation, constant, symbol, 

compound, form, iteration, m.form, 

selection,    aggregate,    procedure.application); 

program   — form; 
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5.3.4 Auxiliary Mode Definitions 

name. pdl. element «= S(name : symbol,  old. index: int,  datum : ptr.any) ; 

pdl <= R (name. pdl. element); 

stack, ptr «= PTR (STACK); 

5.3.5 Evaluator 

ev_ program   — 

PROC (f:form) ptr.any; 

DECL name.pdl:pdl SIZE (name.pdl.length) ; 

DECL  pdl_ index: int; 

DECL value.stack,   result.slot,  aux. result, slot: stack, ptr ; 

value, stacks allocate(STACK, (value, stack, size) ); 

result, slot «- allocate(STACK,  ( result, slot, size) ); 

aux. result _ slot *■ allocate(STACK,  ( result, slot, size) ); 

pdl.index   *■   0; 

install, initial, environment (name, pdl, pdl.index, value, stack) ; 

eval (f) ; 

ENDP; 

eval   *- 

PROC (f : form) ptr _ any ; 

DECL m: mode ; 

m   *■   mval (f) ; 

NT  There is a separate evaluator for each of the nine types of forms ; 

m = constant =» ev.constant ° val(f) ; 

m = symbol 4 ev. symbol ° val(f); 

m = binary, operation =* ev.binary, op ° val(f); 
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m = compound«form =»  ev.statementp o val(f); 

m = iteration =* ev. iteration ° val(f) ; 

m = m.form =» ev.mform o val(f); 

m = selection =» ev. selection ° val(f); 

m = aggregate =» ev. aggregate ° val(f) ; 

m = procedure _ application =» apply ° val(f)     ENDP ; 

NT   Primitive procedures such as allocate,  mval,  and val are discussed in § 5.15; 

5.3.6   Discussion 

A program is a form which is not part of another form.   The evaluation 

of a program entails: 

(1) creating and initializing the structures required by the evaluation 

process, 

(2) initializing the environment to contain the definition of builtin 

procedures, 

(3) evaluating the form. 

There are three principal structures employed by the evaluators:   the 

name-pdl, the value-stack, and the result-slot.   For each variable created 

in the process of evaluation an entry is made on the name-pdl containing 

the variable1 s name,  a pointer to its value,  and some other information. 

The value of a variable is stored on the value-stack which is a block of 

storage managed in LIFO order.   The result-slot is used as a register — 

to temporarily hold a created value.   A value so held is said to be a pure 

value.   Storage other than these three structures is referred to collectively 

as the heap. 

Evaluation of a form consists of determining the type of form and, 

based on this type,  calling one of the lower level evaluators. 
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5.4   CONSTANTS 

5.4.1   Concrete Syntax 

constant  — bool.constant | int. constant | char _ constant | noneref_ constant | 

none _ constant | symbol „constant | mode, constant | proc_ constant 

bool_ constant  -* TRUE | FALSE 

int_constant —   {-} {digit} 

char. constant  —  ! character 

noneref. constant — NIL 

none .constant  —  NOTHING 

symbol.constant — " {string.char}   " 

Cross Reference 

character - §5.2.1 

mode .constant — §5.9.1 

proc. constant — §5.12.1 

string, char - §5.2.1 

5.4.2 Examples 

int. constant:     7     10     940     1604     -360 

char, constant:     'a      l —      !:      !l 

symbol, constant:     "temp"     "derivative"     "Fourier"     "a = b * c"      "f" 

5.4.3 Abstract Syntax 

constants PTR(bool,  int,   char,  noneref,  symbol,  mode,   none,  proc.var); 
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5.4.4 Evaluator 

ev.constant *■ 

PROC (c : constant) ptr.any; 

NT A constant is treated as a 0-ary procedure.   The value of a constant is 

obtained by copying the constant into the return-slot and returning a 

pointer to this copy; 

return, result (c ,  mval(c) )      ENDP ; 

NT    Auxiliary routines such as return-result are discussed in  § 5.14; 

5.4.5 Discussion 

A constant is a form having constant value.   It is treated as a  0-ary 

procedure which always delivers the same result.   Predefined constants 

exist for most of the builtin data types. 

Each constant has two representations:   an external representation 

given by the concrete syntax and an internal representation given by the 

abstract syntax.   The external representations should be self-explanatory. 

The internal representations,  it should be noted,  involve one extra level 

of pointers.   For example, an int-constant,  e.g.,  3,   is represented 

internally by a pointer to an INT which contains the bit-pattern for 3. 

Similar internal representation is used for each type of constant except 

NONE.   The none-constant NOTHING is represented internally by a pointer 

whose value is NIL. 

Note that the noneref-constant NIL is represented internally by a 

pointer to a noneref which contains the bit-pattern for NIL.   Hence, the 

two forms "val(NIL)" and "NOTHING" have identical values (i.e.,  evaluate 

to identical results). 
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5.5   IDENTIFIERS 

5.5.1 Concrete Syntax 

lower, case, or «digit -• lower, case, char | digit 

identifier -• lower, case.char   {lower, case.or.digit}   | {special.char } 

5.5.2 Examples 

x 

pressure 

a23 

> > 

5.5.3   Abstract Syntax 

symbol «= PTR (symbol, table, element) ; 

string 4=   R(char); 

symbol, table .element 4= S (print, name : PTR (string) , 

datum: ptr . any, 

pdl. position: int); 

Relation of Abstract to Concrete Syntax 

On input,  an identifier is converted to its internal representation — a 

symbol.   Symbols are handled in the same fashion as atoms in Lisp 1.5 

[ McCar62 ] .   Which is to say that all identifiers of the same spelling are 

represented internally by the same symbol value,  i.e., by pointers to a 

unique symbol-table-element. 
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5.5.4 Evaluator 

ev. symbol *■ 

PROC (name : symbol) ptr.any; 

DECL   p: ptr.any; 

p *- val (name) . datum; 

p =   NIL =» error ("unbound.identifier"); 

ELSE   p; 

ENDP ; 

5.5.5 Discussion 

Identifiers are the external designations of objects in the language. 

These objects include not only integers,  Booleans,  and the like, but also 

procedures and binary operators. 

The value of an identifier is pointed to by the "datum" field of its 

symbol-table-entry.   This is updated and restored as variables of that name 

are created and destroyed on procedure entry and exit (c.f. §5.13.5).   If no 

variable of a given name has been created, the "datum" field has the value 

NIL.   It should be recalled that the value NIL is the internal representation 

of the constant NOTHING.   Hence, the value of an undefined identifier is 

NOTHING. 

5.6   BINARY OPERATIONS 

5.6.1   Concrete Syntax 

form —* form2    binary, operator    form 

binary, operator -» identifier 

The following identifiers have been given builtin values as binary-operators: 

263 



=      *^><^      +      -*/*-°VA 

Refer to sections 5.15 and 5.16. 

5.6.2   Examples 

a + b 

x » y * 5 

b *- p V q A r 

g ° x - y 

5.6.3 Abstract Syntax 

binary, operation <= S(lhs : form,   op : symbol,   rhs : form); 

5.6.4 Evaluator 

ev. binary _ op «- 

PROC (b : binary _ operation) ptr „ any ; 

b.op = "«-" =» assign (b.lhs,  b.rhs); 

b.op = "°"   =»    apply2 (checkproc ° eval(b.lhs), (formp  :  b.rhs)); 

ELSE   apply2(checkproc° ev_ symbol (b.op), (formp : b.lhs,  b.rhs)); 

ENDP; 

checkproc «*- 

PROC (p: ptr _ any BYVALUE) procedure„block; 

[mval(p).class = "ptr" =»  p *■ val(p) J; 

mval(p) ■ explicit „procedure =» val(p) ; 

mval(p) = code.procedure =» val(p); 

ELSE  error ("undefined_ procedure"); 

ENDP; 
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assign +- 

PROC (lhs : form,  rhs : form) ptr _ any; 

DECL left,  right: ptr . any; 

DECL pv_flag:bool; 

left «- eval (lhs); 

[pure„value (left) =* BEGIN left «- NIL;  pv.flag *~ TRUE END ]]; 

right *■ eval (rhs); 

pv.flag = FALSE -»    assign2 (left, right) ; 

right; 

ENDP ; 

Cross Reference 

apply2 - §5.13.4 

assign2        —        §5.14 

5.6.5   Discussion 

In concrete representation,  all binary operations are given equal prece- 

dence and all associate to the right.   The evaluation of a binary operation 

distinguishes between three cases:   (1) assignment,  (2) application (denoted 

"°") of a procedure to a single argument,  and (3)  application of a normal 

infix operator to its two arguments. 

Assignment has one special case:   if the left-hand value is a pure value, 

then the assignment is not performed.   However,  even in this case, the 

right-hand form is evaluated, thereby assuring that desired side effects 

will occur. 

Procedure application written in the format "(proc) °  (arg) "  is syn- 

tactic sugar for procedure application written in the format "(proc)(( arg))M. 

The evaluator reduces the former to the latter. 
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A normal infix operator is defined by a procedure — either builtin or 

programmer-defined.   The evaluator first obtains the defining procedure 

and then calls on the normal routine for performing procedure application 

(apply2).     The builtin binary operators are discussed in sections 5.15 and 

5.16. 

5.7   COMPOUND  FORMS 

5.7.1 Concrete Syntax 

statement — form | form  =»   form 

compound.form — BEGIN { statement;}®  END       ([ { statement;}®] 

5.7.2 Examples 

BEGIN 

x  —   0; 

FOR y - 1, ..., n    DO    x - x+f(y); 

END 

[ x >y   =»   x-y;  ELSE y - x ]] 

BEGIN 

x   -  f(y, z) ; 

p(x)   =»   z; 

y - q(r) ; 

p(w)   =»   q(y) ; 

ELSE   q(w) ; 

END 
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5.7.3 Abstract Syntax 

clause «= S (test: form,  consequent: form); 

statement <= PTR (form,   clause) ; 

statementp <= R (statement); 

compound.form *•  statementp; 

5.7.4 Evaluator 

ev. statementp   *- 

PROC (r : statementp) ptr.any ; 

DE C L re suit: ptr . any; 

DECL exit, flag: bool ; 

result «•- NIL; 

exit.flag -  FALSE; 

FOR i *- 1, ..., length(r) TILL exit.flag DO result - ev_ statement(r[i], exit.flag); 

result  ENDP; 

ev. statement *- 

PROC (s: statement,  exit, flag: bool BYREF) ptr.any; 

mval(s) = form =>  eval ° val(s); 

mval(s) = clause =*  ev. clause (val(s),  exit .flag); 

ENDP ; 

ev. clause *- 

PROC (c: clause,  exit, flag : bool BYREF) ptr.any; 

not ° eval. to. type (c.test,  bool) =»  NIL; 

exit .flag *- TRUE ; 

eval (c. con sequent); 

ENDP ; 
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5.7.5   Discussion 

A compound form is a sequence of statements.   It may be constructed 

either (1) implicitly,   in an explicit-procedure (c.f. §5.12.1),  or (2) explicitly, 

and then denoted by BEGIN . . . END bracketing. 

A compound form is evaluated by evaluating its statements in turn until 

either (a) the sequence is exhausted,  or (b) a statement of type clause 

occurs in which the test has value TRUE.   In the former case, the value of 

the compound form is the value of the last statement;  in the latter case, the 

value of the compound form is the value of the consequent of the clause. 

5.8   ITERATIONS 

5.8.1 Concrete Syntax 

iteration -* FOR identifier *» form,  {form,}...,  form {test} DO form 

test ■* WHILE form |  TILL form 

5.8.2 Examples 

FOR  i - 1, . . . , n DO  sum *■ sum + f(i) 

FOR  i - 5, 10, . . . , k TILL  p(i)  DO 

X - X * [q(x) -» t(x) ;   ELSE t(i) J 

FOR  i *- 1, . . . , n DO 

FOR  j - 1, . . . , m DO 

«i,j) 
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5.8.3 Abstract Syntax 

iteration   «=  S (index : symbol, 

first : form, 

second : form, 

limit : form, 

test.clause : S(condition : symbol,   test : form), 

body : form); 

Relation of Abstract to Concrete Syntax 

Should the second form of an iteration be missing in concrete repre- 

sentation, the field "second" will be NIL in abstract representation. 

Similarly, a missing test in the concrete program is represented by a 

NIL value in the field "test.clause.test". 

5.8.4 Evaluator 

ev.iteration -*- 

PROC(f : iteration) ptr.any; 

DECL i,   step,   limit : int; 

DECL cond : bool; 

DECL index.address,   result : ptr.any; 

i *- eval.to.type (f. first, int); 

step *-  [f. second = NIL  =»   1; eval.to.type (f . second , int) - i ] ; 

limit +- eval.to.type (f . limit, int); 

NT   Since the index variable is local to the iteration,  a new variable of 

specified name is created and initialized to the value of i; 

index, address +- install, variable (f. index, int, ( ) , NIL); 

make.current(l) ; 

val(index.address)  <- i; 
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result -  BEGIN 

NT   There are two routines for performing iteration:   the second 

processes iterations having a test clause,  the first processes 

iterations with no test; 

f. test, clause = NIL  =» 

iterate (index, address,   step,  limit,  f. body,  NIL); 

cond *-  [[ f. test .clause, condition = "TILL" ->   TRUE; 

f . test _ clause . condition = "WHILE"   -+   FALSE ] ; 

iterate, with.test (index.address,   step,  limit,  f . body,  NIL, 

cond,  f . test .clause . test) ; 

END; 

NT   The index variable created above is deleted; 

remove .variables (1) ; 

result  ENDP; 

iterate *• 

PROC(ip : ptr.any,   step : int,  limit : int,  body : form,  old .value : ptr.any) 

ptr.any; 

( sign(step)*(val(ip) - limit)) > 0   =*   old.value; 

old _value  «-  eval(body) ; 

val(ip)   *- val(ip)   +  step; 

iterate (ip,   step,  limit,  body,  old_ value) ; 

ENDP; 
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iterate, with „test *■ 

PROC (ip: ptr.any,  step: int,  limit: int, body:form,  old.value:ptr.any, 

cond : bool, test: form) ptr . any ; 

DECL  saved.flag, test.value: bool; 

(sign (step) * (val (ip) - limit)) > 0 =» old _ value ; 

[[pure, value (old .value) =» [old. value «-  save (old. value); saved, flag — TRUE] J ; 

test, value *- eval. to .type (test, bool) ; 

[[ saved.flag =* old.value *■ unsave (old.value) ] ; 

test .value  = cond =» old. value; 

old. value *-  eval (body); 

val(ip) *- val(ip) + step; 

iterate, with .test (ip,   step,  limit, body,  old.value,  cond,  test); 

ENDP ; 

5.8.5   Discussion 

An iteration specifies the repeated evaluation of some form for changing 

values of an index.   An iteration consists of an index,  an iteration-list,   a 

possible test,  and an iteration body. 

The index is a variable,  denoted in concrete representation by an 

identifier,  whose type is INT.   The scope of the variable is the iteration; 

hence,  it is created in evaluating the iteration and destroyed when the 

iteration terminates. 

The iteration list consists of either two or three forms.   The first and 

last of these specify initial value and upper limit for the index.   If only two 

forms are in the iteration list, the iteration step is taken by default to be 1. 

If three forms are present,  the step is given by the difference between the 

values of the second and first forms. 

The test,  if present,  consists of a halting condition (either TILL or 
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WHILE) and a body.   The test body is evaluated just prior to each evalu- 

ation of the iteration body.   If the value of the test body agrees with the 

halting condition,  then the  iteration ceases at that point (without  again 

evaluating the iteration body). 

5.9   MODES 

5.9.1 Concrete Syntax 

mode, constant - INT | BOOL | CHAR | NONE | NONEREF | PTR_ ANY | STACK 

m.form -»• row_ form | struct, form | ptr.form | rany.form | m_def 

row. form -* row. symbol ( {form , } form ) 

row. symbol ■* ROW | R 

struct .form •* struct, symbol ( { identifier : form , }    ) 

struct, symbol -+ STRUCT | S 

ptr _ form - PTR ( {form , }0 ) 

rany.form - RANY({form, }® ) 

m.def -*- identifier 4= form 

5.9.2 Examples 

ROW (3, INT) 

R([[x<y=> 10; 2*n]],   [ p(x) * INT; BOOL J) 

R(R( complex)) 

STRUCT (re : INT,   im : INT) 

S (amp. rating : INT,  manufacturer : R(n, CHAR)) 

PTR (bool- matrix) 

PTR (CHAR,  BOOL, [n > 0 =* INT;  complex]]) 

RANYUNT,  complex) 

RANY(BOOL,   CHAR,   PTR (string, intp)) 
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triple <=R(3, INT) 

complex <= pair «= S (re : INT,  im : INT) 

header <= PTR (triple,  pair,  INT) 

int_or_bool«=RANY(INT,  BOOL) 

5.9.3 Abstract Syntax 

m. form «= PTR (row. form,   struct, form,  ptr.form,   rany.form,  m_def); 

row. form «= S (length : form, type : form); 

struct, form <= R (struct, component «= S (name : symbol, type : form)); 

ptr.form «= R(form); 

rany.form <= R (form) ; 

m. def «= S (name : symbol, type : form); 

Relation of Abstract to Concrete Syntax 

A concrete  row-form whose first form is missing has an abstract row- 

form with "length" field NIL. 

5.9.4 Auxiliary Mode Definitions 

mode 4= PTR (ddb) ; 

modep «= R(mode) ; 

type, descriptor 4= PTR (row. def,  struct, def,  modep); 

ddb «= S(d : type.descriptor, 

class : symbol, 
type _ resolved : bool, 

dope .length : int, 
a.fn: proc.var, 

s.fn: proc.var, 

canonical, name : symbol); 
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row.def «= S (element.type : mode,  length : int); 

struct_def <= R (struct. def_ component «= 

S (field _ name : symbol, field _ type : mode) ); 

5.9.5   Evaluator 

ev. mform — 

PROC(f: m.form) ptr.any; 

DECL m : mode ; 

DECL result: ptr _ any ; 

m   -   BEGIN 

NT   There are five classes of m-forms,  each being handled by a 

separate evaluator.   In each case,  the evaluator returns a mode, 

i.e.,  a pointer to a ddb in which the data-type definition resides; 

mval(f) = row .form =*  ev.row ° val(f) ; 

mval(f) = struct .form =»  ev_ struct ° val(f) ; 

mval(f) = ptr .form =»  ev.ptr ° val(f); 

mval(f) = rany.form =*  ev.rany ° val(f) ; 

mval(f) = m.def =>  ev.mdef ° val(f) ; 

END; 

NT   The value  m  is "returned" by copying it into the  result-slot and 

returning a pointer to the copy; 

free .last (result, slot); 

result *- get. stack, space (result, slot,  mode,  (    )); 

val (result) *- m ; 

result; 

ENDP; 
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ev.row *■ 

PROC (r : row. form) mode ; 

DECL m,  m.elt: mode; 

DECL n : int; 

NT   Storage for the created ddb is obtained from the heap; 

m *- allocate (ddb,   (   ) ); 

m.class «•- "row" ; 

m.type. resolved — TRUE; 

m.d *-  allocate (row.def, (   ) ); 

NT   m.elt is the mode of the elements constituting the row; 

m_elt *-  eval_to.type (r.type,  mode); 

m.elt. type, resolved = FALSE =>  error ("row.error") ; 

m.d.element.type *- m.elt; 

NT n contains either (1) the number of elements constituting a row of this 

mode,   if this number is fixed,  or (2) the code -1,   if this is not fixed; 

n-   I r.length = NIL =»   -1 ; 

ELSE   eval. to.type (r.length,   int) ]] ; 

m.d.length *- n; 

NT   The "dope-length" field contains the number of length unresolved 

dimensions ; 

m.dope _ length *- m.elt. dope, length +  [n = -1 =* 1 ;  Oj; 

NT   The assignment and selection functions for this mode are constructed 

by two primitives ; 

m.a.fn *- build, row. assigner (m_ elt, n) ; 

m.s.fn <- build, row. selector (m.elt, n) ; 

m ENDP; 
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ev_ struct +- 

PROC (s: struct, form) mode; 

DECL m,   m_elt: mode ; 

DECL n : int; 

DECL r : ptr_ any; 

n *•  length (s) ; 

m *-  allocate (ddb, ( )) ; 

m.class *-  "struct" ; 

m.type. resolved *■  TRUE; 

m.d *■  allocate (struct, def,  (n) ); 

m.dope .length —  0; 

FOR i<- 1, ..., n DO 

BEGIN 

m . d[i] . field, name  «-  s[i] . name ; 

m.elt *■  eval _ to _ type (s[i] . type,  mode); 

m_ elt . type, resolved = FALSE  =»   error ("struct.error") ; 

m . d[i] . field .type  -*-  m.elt; 

m.dope .length *- m.dope .length + m.elt.dope _ length ; 

END; 

m.a.fn *~  build, struct.assigner (m.d) ; 

m. s. fn *-   build_ struct _ selector (m.d) ; 

m   ENDP; 
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ev.ptr — 

PROC (f:ptr_form) mode; 

DECL n:int; 

DECL m: mode; 

n *- length (f) ; 

m ♦■ allocate (ddb, ( ) ) ; 

m.class *- nptrM ; 

m.type. resolved «- TRUE; 

m.d —  allocate (modep, (n)); 

FOR i *- 1, ..., n DO 

|[m.d[i] *-  eval_to_type(f[i], mode); 

m . d[i]  = NIL  =>   error ("ev. ptr_ error") ]] 

m.dope_ length *-  0; 

m.s.fn «- NIL;  NT can't select a component of a pointer; 

m.a.fn - BEGIN 

n =  1   =»   build _ptr_assigner (m.d[l]) ; 

ELSE build . united. ptr_ as signer (m.d); 

END; 

m ENDP; 
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ev.rany *- 

PROC ( r : rany „form) mode; 

DECL n : int; 

DECL m : mode ; 

n «-  length (r) ; 

m *■ allocate (ddb, ( )) ; 

m.class *■ "rany" ; 

m.type. resolved *- FALSE;   NT This is redundant; 

m.d *■  allocate (modep, (n)); 

NT   The descriptor for a rany is a row of the alternative modes.   Each of 

these must be resolved; 

FOR  i - 1, . . . , n DO 

BEGIN 

m.d[i]  +-  eval_to_type (r[i],   mode); 

m . d[i] . type .resolved = FALSE   =»   error ("rany _ error"); 

END; 

m   ENDP; 
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ev_mdef +■ 

PROC (d:m_def) mode; 

DECL p : ptr.any; 

DECL ml, mr : mode ; 

p *- eval_ symbol (d.name) ; 

NT   The Mname"field of an m_def must be a mode _ valued variable ; 

mval(p) =£ mode =>  error ("mdef _ error"); 

NT   If the mode valued variable does not already point to a ddb,  it is made 

to do so; 

[val(p) = NIL =» val(p) - allocate (ddb, < >) J; 

ml *- val(p) ; 

mr *■ eval_to_type (d.type,  mode); 

val(ml) «- val(mr) ; 

ml . canonical.name *- d.name ; 

NT   The value of an m_def is the value of its "type" field ; 

mr ENDP ; 

5.9.6   Discussion 

A mode corresponds to the intuitive notion of data type.   It specifies the 

structure and other properties of a set of values which are said to be of that 

mode,  or have that mode.   Modes are themselves values and may be created, 

compared,  and manipulated. 

Mode values originate in ELI as either (1) the value of a mode constant, 

or (2) the value of an m-form.   In either case,  a mode is a pointer to a ddb 

(stored in the heap) which defines a data type. 

A ddb for a data type @ consists of the following: 

(1)   the class of @ (row,   struct,  ptr or rany), 
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(2) a flag specifying whether or not <& is type resolved, 

(3) the number of length unresolved dimensions (dope-length), 

(4) a canonical name which,  when present,  is an external denotation for 

the ddb, 

(5) two proc-vars,  each pointing to a procedure — one for assigning to and 

one for selecting from an object of type <&, 

(6) a type-descriptor,  which specifies the structure of an object of type @ . 

Mode constants are primitives in the language.   The value, 9ft', of a 

mode constant,   3TI,   is a mode which points to a fixed,  predefined ddb.   As 

with all constants, the value 3ft   is a pure value;  i.e., 3ft   appears in the 

result  slot. 

The four mode valued operators ROW,  STRUCT,   PTR,  and RANY 

create a new ddb on each call and assign appropriate values to the ddb!s 

fields.   Modes produced by these operators are said to belong to class row, 

struct,   ptr,  and rany,  respectively;  objects having such modes are referred 

to as rows,   structs,   and ptrs,   respectively.^ 

A row is a compound object whose components have identical mode and 

size.   The number of components in a row is obtained by applying the function 

"length" to the row.   Any of the components may be selected by subscripting 

the object with a single form having INT value (c.f. §5.10).   There are two 

acceptable formats for the arguments to ROW,   producing two sorts of modes 

(both of class row). 

(1)    If two operands are present,  the value of the first (which must be an 

INT) is the number of components in the row being defined. 

*The remaining case (ranys) never occurs as it is impossible to create an 
object whose mode is of class rany. 
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(2)    If the first operand is omitted,  then the number of components is 

unspecified and the mode is said to be length unresolved. 

A struct is a compound object whose components may have differing 

modes and sizes.   The number of components and the mode of each com- 

ponent are fixed for all structs of a given mode.   Selection of a component 

from a struct is performed by the operation of selection (c.f. §5.10) and 

may use either an INT index or a symbolic name as a designator. 

The attribute length unresolved may apply to modes of class struct as 

well as those of class row.   In the latter case, this may be either because 

the number of components is undetermined or because the mode of the 

components is itself length unresolved.   A struct mode will be length 

unresolved if any of its components is.   Each length unresolved mode may 

be assigned an integer greater than or equal to 1 (termed a dope-length^) 

defined to be the number of distinct lengths which must be specified for that 

mode to be fully resolved.   The dope-length of a struct is the sum of dope- 

lengths of its component modes.   The dope-length of a row is either (a) the 

dope-length of the mode of its components,  or (b) this number plus one, 

depending on whether or not the number of components is fixed.   In creating 

a row or struct whose mode is length unresolved,  it is necessary to supply 

a dope-vector of dope-length INT's; the dope-vector is said to resolve the 

mode (c.f. §5.13.4). 

The operator PTR,  like ROW,  delivers modes of two subclasses, 

depending on the format of its argument list.   Given a single argument, 

PTR delivers a simple pointer mode;  given two or more arguments,   PTR 

* A dope-length may also have value zero,  indicating that the associated 
mode is fully length resolved. 
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delivers a united pointer mode.   These subclasses differ in the following 

fashion.    Assume that all arguments to PTR deliver a value of type mode 

(otherwise an error will occur) and denote these values by 3ft..   If p has 

mode PTR(3TC..),  then p is a simple pointer and can be assigned to point to 

values having mode 3ft...   Subsequent to such assignment, val(p) is the value 

to which p  points.   On the other hand,   if p!  has mode PTR(3TC.., ... ,311 ), 

with n ^ 2,  then p1   is a united pointer and can be assigned to point to 

values having modes 37I-.,  or 3ft2,  or . . .,  or 3ß .   The form val(p!) yields 

the value to which p!   points. 

The class rany differs from the other three classes in that no value 

has mode of this class.   (Modes of this class can be created,  but not corre- 

sponding values.)   RANY takes as arguments n forms with mode values 

3TC-. > ••• > 311   and produces a mode 311'   which is said to be type unresolved 

with alternatives 3ft,, ... , 3ft .   It is possible to declare a formal parameter 

or declared variable (c.f. §5.12.1) to have mode 3ft1,  the interpretation being 

that the variable so declared is either an 3TC-,,    or an 3ft9,   or ...,   or an 3TI  . 
i & n 

Each time such a variable is created, 3TI' must be type resolved by speci- 

fying which of the alternative modes is to be the actual mode of that 

instance of the variable (c.f. §5.13.4). 

The remaining m-form is m-def,  written as a binary operation in the 

format 'V 4= SP"  where y is an identifier and f is a form.   <P must denote 

a mode valued variable,  3ft,  and & must evaluate to a mode, 3ft1 .   Evalu- 

ation of the m-def establishes a two-way relation between 9 and   3ft',  as 

follows.   (1) The ddb to which 3ft points is given the same value as the ddb 

to which 3TC'   points.   (If 3ft has value NIL,   it is set to point to a newly 

allocated ddb and m-def proceeds as above.)   (2) The "canonical-name" 

field in val(3ft) is assigned 9* as its value.   As a result of these two actions, 
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the mode 9ft,  denoted by Sf t  points to a ddb with value equal to val(WL} ), 

while this ddb has a field which refers back to &.   The identifier SP thus 

serves as an external representation of the otherwise non-denotable ddb; 

further, this external representation can be recovered from the ddb itself. 

5.10   SELECTION 

5.10.1 Concrete Syntax 

selection -*■ form2 field 

field ■*  .    identifier I   [   form   ] 

5.10.2 Examples 

a[i] 

a[f(x) + 3 * a[i]] 

z . re 

time, card . name . first, initial 

positions [ d(t) ]. im 

5.10.3 Abstract Syntax 

selection 4= S (object: form,  field : form); 

Relation of Abstract to Concrete Syntax 

The concrete format for selectors 

form . identifier        (e.g.,  name . first „initial) 

is syntactic sugar for the equivalent concrete format 

form ["identifier" ] (e.g.,  name [ "first .initial" ]) . 

The conversion from concrete (external) representation to internal repre- 

sentation replaces instances of the former type by equivalent forms of the 
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latter type.   Hence,  the abstract representation has provision only for the 

latter. 

5.10.4   Evaluator 

ev. selection *- 

PROC (s : selection) ptr _ any ; 

DECL x,  result: ptr _ any ; 

DECL saved . flag : bool; 

saved.flag «- FALSE ; 

x *-  dereference ° eval (s . object) ; 

d pure.value(x) =* BEGIN x +- save(x) ;   saved.flag *- TRUE   END ]] : 

result *-  select2(x, field, index (mval(x), s.field)) ; 

[[ saved . flag => result — unsave (result) ]]; 

result   ENDP; 

dereference — 

PROC (x : ptr . any) ptr _ any ; 

mval(x) . class =£ "ptr" =>  x; 

ELSE  dereference0  val(x); 

ENDP ; 

unsave *- 

PROC (p : ptr _ any) ptr _ any ; 

p —  return.result(p, mval(p)) ; 

free, last (value, stack) ; 

p   ENDP; 
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save *- 

PROC (in: ptr _ any) ptr _ any; 

DECL out: ptr . any ; 

out «- get_ stack, space (value, stack,  mval(in),  dope, vector (in)) ; 

assign2   (out, in); 

out ENDP; 

field, index «*- 

PROC (m:mode,  f:form) int; 

NT   This evaluates the field of a selection and produces an int index; 

DECL name : symbol; 

DECL p: ptr .any; 

p *- eval (f) ; 

m . class = "row" => 

BEGIN 

mval(p) = int =» val(p); 

ELSE error ("field, error") ; 

END; 

m . class = "struct" =* 

BEGIN 

mval(p) = int =* val(p); 

mval(p) 4- symbol =»  error ("field, error") ; 

name *- val(p); 

index *- 0; 

FOR i - 1, ... , length (m.d) TILL index * 0   DO 

[ m . d[i] . field, name = name =>  index — i ]]; 

index # 0 =*  index; 

ELSE  error ("field.error"); 

END; 
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ELSE  error ("field, error"); 

ENDP; 

5.10.5   Discussion 

A selection designates a single component from a compound object, 

that is,  from a row or a struct.   A selection is written as a form followed 

by a field.   Since a selection is a form,  the operation of selection may be 

repeated (i.e.,  form   field.,     fields     . . .     field   ) and associates to the left. 

Fields are denoted in two ways:   (1) by a dot followed by an identifier which 

is treated as a constant symbol,  (2) by a bracketed form which is evaluated. 

The former format is syntactic sugar for a special case of the latter format. 

Evaluation of a selection begins with evaluation of its form.   If this 

value is a pointer,   it is dereferenced;   i.e.,  the operator val (c.f. §5.15) is 

repeatedly applied until a non-pointer value is obtained.   If the resulting 

value is a pure value,  it is saved.   Having thus obtained a value *V, the 

evaluator next evaluates the field.   If its value is a symbol,  the symbol is 

converted to an integer index;  if its value is an int,  the int is used directly 

as an index.   The operation of selection is carried out by applying the 

selection procedure for the mode of 'V to Y and the index 9*,  obtaining the 

9      component of 'Vs   Yg>.   As with all values in the language,   Yg, is repre- 

sented^ in such fashion that assignments to  *V    are well-defined and may 

change the value of "V. 

* Such representation is referred to as an L-value in CPL [CPL66] 
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5.11 AGGREGATES 

5.11.1 Concrete Syntax 

aggregate -* ( {form:} {SIZE form:} {form, }  ) 

5.11.2 Examples 

<2,   3,   2+3,   ll*(7+4)) 

( complex: 2#x, y) 

(string: !s,   'n,   !o,   'b,   !o,   'l) 

5.11.3 Abstract Syntax 

aggregate <= S (type : form,   size : form,  components : formp); 

5.11.4 Evaluator 

ev_ aggregate *- 

PROC (a : aggregate) ptr.any; 

DECL n: int; 

DECL  p: ptr.any; 

DECL  m: mode; 

n *-  length (a . components) ; 

p *- NT   This gets space on the value stack to hold the compound object; 

BEGIN 
a . type = NIL => get, stack, space (value, stack,  intp, (n)); 

m *- eval.to.type (a. type,  mode) ; 

a . size =£ NIL =» 
get. stack, space (value, stack, m, eval.to.type (a. size, intp)); 

m . dope _ length = 1 => get _ stack, space (value _ stack,  m, ( n) ) ; 
ELSE   error ("aggregate„error") ; 
END; 
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FOR   i - 1, . . . , n   DO 

NT   This evaluates the components of the aggregate and fills in the 

components of the compound object; 

assign 2 (select2(p, i), eval(a . components [i] )) ; 

NT   The compound object is copied into the result  slot and the space 

allocated above on the value stack is freed; 

p *- return, result (p, mval(p)) ; 

free .last (value, stack) ; 

p    ENDP; 

5.11.5   Discussion 

An aggregate creates and gives value to a compound object.   It is a con- 

venient and efficient means for creating compound values such as vectors, 

complex numbers,  and payroll records. 

An aggregate consists of a type,  a size,  and zero or more components. 

If either the type or size is missing,  the default values are intp and the 

number of components,   respectively.   The value of an aggregate is a com- 

pound object of specified type and size,  having components equal to the 

value of the components of the aggregate.   The value of an aggregate is a 

pure value;  hence,   it is left in the result-slot. 
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5.12 PROCEDURES 

5.12.1   Concrete Syntax 

proc. constant -* explicit.procedure | code.procedure 

formal.parameter -* identifier : type {bind.class} 

type ■+ mode. constant | identifier 

bind.class - BYREF | BYVALUE | UNEVALED 

declaration -* DECL {identifier , }    : type options 

options - {SPECIF form} {SIZE form} 

r i®> explicit, procedure -*■ PROC ({formal, parameter , }  ) type; 

{declaration ;}    {statement ; }^  ENDP 

Note 

(1) Code-procedure is an undefined nonterminal (c.f. §5.12.6). 

(2) If the bind-class of a formal-parameter is omitted,  it is taken by default 

to be BYREF. 

Cross Reference 

form — §5.3.1 

identifier — §5.5.1 

mode-constant — §5.9.1 

statement — §5.7.1 

5.12.2   Examples 

(a)   Spur of a square matrix of integers: 

PROC (a : int. matrix) int; 
DECL   s:int; 

FOR   k - 1, ...,length(a)   DO   s «- s + a[k] [k]; 

ENDP 
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(b)   Transpose of a square matrix of integers: 

PROC (b : int. matrix) none ; 

NT   This procedure transposes the matrix b  in place; 

DECL n, temp : int; 

FOR   i*- l,...,n - length(b)   DO 

FOR k- i+1, ...,n   DO 

[temp - b[i] [k] ;  b[i] [k] - b[k] [i] ;  b[k] [i] - temp]; 

ENDP 

5.12.3   Abstract Syntax 

proc.var 4= PTR (explicit«procedure,  code, procedure) ; 

expr. formal <= S (name : symbol,  type : form,  bind „class : symbol) ; 

expr.formalp 4= R (expr .formal) ; 

declaration 4= S (names : symbolp 4= R (symbol) , 

type : form, 

specif: form, 

size : form ); 

declarationp «= R (declaration) ; 

explicit, procedure <= S (formals : expr .formalp, 

re suit .type : form, 

declarations: declarationp, 

statements : statementp ); 
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Relation of Abstract to Concrete Syntax 

(1) Although a type in the concrete syntax is restricted to be either a mode- 

constant or an identifier,  it is represented in the abstract syntax as a 

form (c.f. expr-formal,  declaration,  and explicit-procedure). 

(2) The field "bind-class" of an abstract expr-formal is the bind-class 

specified in the concrete formal-parameter, rendered as a symbol 

(e.g. "BYVALUE"). 

(3) The two options of a concrete declaration are represented by two forms 

in an abstract declaration:   a missing option has a NIL form. 

5.12.4 Auxiliary Mode Definitions 

code .formal <= S (name : symbol, type : mode,  bind .class : symbol) ; 

code.formalp «= R(code.formal) ; 

machine.code «= R(int); 

code, procedure 4= S(formals: code.formalp, 

re suit, type : form, 

body: machine . code ); 

formal, par ameterp «= RANY (expr.formalp,  code.formalp); 

procedure.block «= RANY (explicit, procedure,  code, procedure) ; 

5.12.5 Evaluator 

For the value of a proc-constant,   see section 5.4.4;  for the application 

of a procedure to its arguments,   see section 5.13.4. 
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5.12.6   Discussion 

Procedure values are commonly created as proc-constants,  of which 

there are two types.   An explicit-procedure defines a process by ELI text 

and is written in the format "PROC .   .   . ENDP".   A code-procedure is 

written in some language other than ELI, typically machine language. 

While there are certain builtin code-procedures,  no external representation 

is defined in the reference language.   It is assumed that implementations 

will choose some representation (e.g.,   symbolic assembly language) 

suitable to their background machine. 

Both types of proc-constants are represented internally by proc-vars 

(c.f.  §5.12.3),   i.e. pointers to the locations in which the actual defining 

bodies reside.   In the case of explicit procedures,  the defining body is 

created,   in heap storage,  at the time the external representation (source 

text) is translated to internal representation. 

The abstract syntaxes of explicit and code procedures are closely 

related.   Both have a return-mode,  i.e. a form* whose value is the data 

type of the result delivered by the procedure.   Also,  both have a set of 

formals which specify the internal name,  data type,  and method of binding 

for each argument position.   One difference should be noted:   in code- 

procedures the data type of a formal is specified by a fixed mode,  whereas 

in explicit procedures the type of a formal is specified by a form* to be 

evaluated when the procedure is entered (c.f. §5.13.4). 

*Note,  however,  that the concrete syntax (c.f. §5.12.1) restricts such a 
form to be either a mode-constant or an identifier. 
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5.13   PROCEDURE APPLICATION 

5.13.1 Concrete Syntax 

procedure application ■* form ( arguments ) 

arguments -* {form, } 

5.13.2 Examples 

f(x) 

g (x,   y«-h(w, z), |[p(x) =* q(x) ;   (a*w)+b]) 

[p(w) => foo; ELSE fum ] (y + z) 

(revert (s, t)) (x, y, z) 

PROC(x:int,  y:int)int; x > y => -y;   -x ENDP  (f(a), a + x*f(b)) 

5.13.3 Abstract Syntax 

formp *= R (form) 

procedure . application 4= S(operator : form,  arguments : formp) 

5.13.4 Evaluator 

apply - 

PROC (f: procedure .application) ptr.any; 

apply2 (checkproc ° eval(f . operator),  f . arguments); 

ENDP ; 
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apply2 - 

PROC (p : procedure „block,   args : formp) ptr.any; 

DECL old _ pdl. index : int; 

DECL declared.type : mode ; 

DECL result: ptr.any ; 

old_pdl.index «- pdl. index; NT pdl .index is free; 

bind.formals (p . formals, args) ; 

make.current(length(args)) ; 

NT   The result.type is evaluated in an environment which includes bound 

values of formal parameters ; 

declared, type *- eval.to. type (p . result „type,   mode); 

Jtyp(p)   =   code, procedure => result *-   xct(p.body,  name „pdl,   pdl. index); 

NT   Otherwise,  p is an explicit.procedure ; 

ev_ declarations (p . declarations) ; 

result *- ev. statementp (p . statements) ]]; 

result *- proc. exit (result,  declared, type,  old. pdl .index) ; 

pdl _ index *- old. pdl. index; 

result   ENDP ; 

bind.formals *■ 

PROC (p : formal, parameterp,  args : formp) none ; 

DECL  m : mode ; 

DECL arg,  new:ptr.any; 

length(p) ^ length(args) =» error ("binding, error") 

FOR  i - 1, . . ., length(args)   DO 

BEGIN 

m  *■ II tYP(p[i]) = code . formal =* p [i] . type ; 
ELSE eval.to.type (p[i] . type,  mode) ]]; 
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NT   There are three cases:   (1) passing the argument unevaluated, 

(2) passing the evaluated argument by reference,  (3) passing the 

evaluated argument by value ; 

p[i] .bind.class = "UNEVALED" -> 

BEGIN 

m ^ form =* error ("binding, error") ; 

new «•- install .variable (p[i] . name, form, ( ) , NIL); 

val(new) *■ args[i] ; 

END; 

arg *- eval(args[i]) ; 

[[ m . class = "rany" =»  m +- resolve (m,  mval(arg)) ; 

not o compatible (m,  mval(arg)) =* error ("binding, error") ]] ; 

(p[i] . bind.class = "BYREF") A not o pure.value(arg) =» 
install, variable (p[i] . name,  NIL, ( ) ,  arg); 

new *- install, variable (p[i] . name,  m,  dope.vector(arg),  NIL); 

assign2 (new,  arg) ; 

END; 

ENDP; 

ev.declarations *■ 

PROC (d : declarationp) none ; 

DECL m: mode; 

FOR   i - 1, . . ., length(d)   DO 

BEGIN 

m *- eval. to_type(d[i] . type,  mode); 

[[ m . class = "rany" =* 
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BEGIN 

d[i] . specif = NIL  =»  error ("decl. error") ; 

m *-  resolve (m,  eval. to .type (d[i] . specif,  mode)); 

END]; 

FOR j - 1, . . ., length(d[i] .names)   DO 

install.variable (d[i] . names [j] ,  m, 

[d[i].size = NIL -» < ); 

eval. to. type (d[i] . size, intp ) ]],   NIL); 

END; 

ENDP ; 

proc.exit *- 

PROC (result: ptr.any,  expected, mode : mode,  old. pdl. index: int) ptr .any ; 

[expected.mode = none =»  result *■ NIL; 

expected, mode . class = "rany" =» 

expected.mode *- resolve (expected.mode,  mval(result)) ; 

not o  compatible (expected.mode,  mval o result) =» 

error ("proc.exit.error") ]] ; 

FOR  i •*- pdl. index,  pdl.index - 1, . . . ,  old.pdl.index + 1  DO 

BEGIN 

([ last _ in (re suit, value . stack) =» 

result *■ return.result (result,  expected.mode) ]]; 

remove .variables (1) ; 

END; 

mval(result) = expected.mode =>  result; 

return, result (result,  expected.mode) ; 

ENDP; 
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resolve +- 

PROC (u: mode,  r : mode) mode ; 

NT   resolve(u, r) returns r if r is one of the alternatives of u,  otherwise 

resolve calls error; 

DECL   found.flag:bool; 

u. class * "rany" => error("resolve.error"); 

FOR i - 1, . . ., length(u.d) TILL found.flag DO 

[u.d[i] =r-> found, flag- TRUE J ; 

found.flag = TRUE => r; 

ELSE   error ("resolve _ error"); 

ENDP; 

Cross Reference 

assign2 §5.14 

checkproc §5.6.4 

ev-statement p §5.7.4 

install-variable §5.14 

remove-variable §5.14 

5.13.5   Discussion 

A procedure application serves to invoke the application of its operator, 

a procedure, to its arguments.   This is carried out in five steps: 

(1) evaluation of the operator to obtain a procedure, 

(2) binding the formal parameters to the arguments, 

(3) evaluation of the re suit-type to obtain the declared type of the procedure, 

(4) evaluation of the procedure body, 

(5) exiting the procedure. 
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The operator may be any form which evaluates to an explicit-procedure 

(c.f. §5.12.3),  a code-procedure (c.f. §5.12.4),  or a pointer to either of these. 

In particular,  a procedure-application which delivers a procedure is a legal 

operator. 

The formal-parameters are bound in lexographical order from left to 

right; each parameter is bound in the environment of variables which existed 

when the procedure application began.    That is,  the binding of a variable 

to an argument does not change the set of variables seen by the evaluation of 

arguments to its right.    A parameter can be bound in one of three ways: 

UTNfEVALED,  BYVALUE,   or BYREF.   In the first case, the argument is not 

evaluated; the formal parameter,  which must have mode form,  is bound to 

the unevaluated argument.   In the other two cases,  the argument is evaluated, 

producing a value O .   Binding BYVALUE creates a new object € '  (having 

the same mode and size) and initializes € *  <-   Ü .   Binding BYREF creates 

no new object but rather establishes a temporary connection between Ü and 

the name  &  of the formal-parameter,   so that use of the name y yields  € . 

The value of the field "result-type" is said to be the declared type of the 

procedure,  i.e. the expected mode of its result.   The mode of its actual result 

must be equal to or compatible with this. 

Evaluation of the procedure body takes place in two possible ways, 

depending on the type of procedure.   If it is a code-procedure,  the body is 

executed.   If it is an explicit-procedure,  its declarations are first evaluated 

and its statements component is evaluated as a compound form.   In either 

case,  the procedure delivers some value O. 
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Exiting the procedure entails destroying the new objects created by- 

parameter binding and declaration evaluation.   If the procedure value 0   is 

an object to be so destroyed (or a component of such an object), then a new- 

object ^!  is created and initialized €y *- 0 .     @ '  becomes the procedure 

value and C is destroyed. 

The final procedure value £? M is checked against the declared type.   If 

the type is correct, no further action is taken;  if 0" can be converted to the 

proper type, the conversion is performed;  otherwise,  an error occurs. 
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5.14   AUXILIARY  ROUTINES  USED  BY THE  EVALUATORS 

Routines are listed in alphabetical order. 

assign2 *- 

PROC (left: ptr . any,  right: ptr _ any) ptr . any ; 

DECL ml, mr : mode ; 

DECL p : proc _ var ; 

ml *- mval(left) ;  mr *- mval(right); 

not o compatible (ml, mr) =»  error ("assign, error") ; 

p *-  ml. a _ f n ; 

install.variable (p . formal. parm[l] . name, NIL, (),  left); 

install, variable (p . formal. parm[2] . name,  NIL,  (),  right); 

make.current(2) ; 

x.ct(p.body,  name.pdl,   pdl. index); 

remove .variables (2) ; 

right   ENDP ; 

compatible *- 

PROC (sink: mode,   source : mode) bool; 

NT     compatible (sink, source) = TRUE iff a value of type source can be 

assigned to a value of type sink.   Four cases are admissible; 
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DECL flag:bool; 

sink = source =»  TRUE ; 

(sink, class - "ptr") A (source = NONEREF) =» TRUE ; 

(sink   =      ptr.any) A (source . class = "ptr") =»  TRUE; 

(sink. class = "ptr") A (source . class = "ptr") A (length(source . d) = 1) =» 

BEGIN 

flag -  FALSE ; 

FOR i «- 1, . . ., length (sink. d) TILL flag DO 

[[ sink . d[i] = source . d[l] =* flag - TRUE ]]; 

flag; 

END; 

ELSE   FALSE; 

ENDP; 

dope „vector «- 

PROC (p : ptr _ any) intp ; 

NT   dope.vector creates a dope vector for the object to which p points; 

DECL   v:intp SIZE < mval(p) . dope „length ) ; 

FOR i - 1, ..., length(v)  DO 

v[i] - length2(p, i); 

v   ENDP; 

error   +- 

PROC (s : symbol) ptr m any; 

NT   error searches for a procedure named  s.   If one is found,  it is 

evaluated.   If not,  an error message is printed and error 2 is 

called to handle the error; 
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DECL p: ptr.any; 

p *- val(s) . datum ; 

(mval(p) = explicit, procedure) V (mval(p) = code .procedure) =» 

apply 2 (val(p), < formp : ) ) ; 

print ("ERROR: ") ; 

print (s) ; 

error2(  ); 

ENDP ; 

eval.to.type «*- 

PROC (f:form,  m:mode) m; 

NT    The mode of the result delivered by this procedure is equal to the second 

argument; 

DECL  p: ptr.any; 

p <-  eval(f); 

mval(p) = m => val(p); 

ELSE  error ("eval.to.type.error"); 

ENDP ; 
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initialize   *- 

PROC (p : ptr _ any) none ; 

NT   initialize (p) assigns an initial value to the object which p points to; 

DECL   m : mode ; 

m    *-     mval(p); 

m     =    int    =»    val(p)     *-     0; 

m     =    bool    ■*    val(p)     *-     FALSE ; 

m = char    =*    val(p)    —     '   ; 

m.class     =    "ptr"     =»     val(p)     *-     NIL; 

m.class    =   "row"   =» 

FOR    i «-  1, ..., length(p)  DO initialize ° select2(p, i); 

m.class    =    "struct"    =* 

FOR   i +-  1, ..., length(m.d)  DO initialize0 select2(p, i); 

NT   otherwise,  p points to a STACK which requires special initialization; 

ENDP; 

install _ variable   *• 

PROC (name : symbol, type : mode,  dope .vector : intp, value : ptr „any) ptr „any; 

NT   install .variable creates a variable whose name is specified by the first 

argument.   This entails (1) adding an entry on the name.pdl, and 

(2) possibly obtaining new storage on the value.stack. 
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pdl. index = pdl_ index, max =»  error ("pdl. overflow"); 

pdl. index *• pdl. index + 1 ; 

name _ pdl [pdl. index] . name «-  name; 

name, pdl [pdl. index] . datum *- 

BEGIN 

value ^ NIL => value ; 

get. stack, space (value, stack,  type,  dope.vector); 

END; 

ENDP; 

make.current  «- 

PROC(n) none; 

NT    This makes the top  n   elements of the name.pdl to be current 

bindings; 

DECL name : symbol; 

FOR   i  <- name.pdl,  name.pdl - 1,   . . . ,   (name.pdl - n)  +   1   DO 

BEGIN 

name «- name_pdl[i] . name ; 

name_pdl[i] .   old.index «-  name, pdl.position ; 

name, pdl.position«- i; 

name . datum «- name.pdl [i] . datum; 

END; 

ENDP; 
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pure.value *- 

PROC (p: ptr.any) bool; 

last.in (p,  result, slot); 

ENDP; 

remove .variables *- 

PROC (n: int) none; 

NT   This removes variables from the name.pdl and,  where the binding is 

not BYREF, from the value, stack as well; 

DECL  s: symbol; 

DECL k: int; 

FOR   i- 1, ..., n DO 

BEGIN 

[ last, in (name. pdl[ pdl. index] .datum, value, stack) =» 

free . last (value _ stack)] ; 

name _ pdl [pdl _ index] . datum *- NIL; 

s «- name _ pdl [pdl. index] . name ; 

k «*- val(s) . pdl. position *- name, pdl [pdl. index] . old. index; 

val(s). datum -   ([ k > 0   =»   name, pdl [k]. datum;  ELSE  NIL]; 

pdl. index *- pdl. index - 1 ; 

END; 

ENDP; 
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return, result «- 

PROC (r : ptr „ any,  m : mode) ptr _ any ; 

NT   This returns the value pointed to by r by copying it into the result-slot. 

If its mode differs from m,  it is converted to an m during the copying; 

DECL temp : ptr _ any ; 

[[ last, in (r, result, slot)   =» 

BEGIN 

temp —  result, slot; 

result, slot «- aux. result, slot; 

aux. result, slot •*-  temp; 

END]; 

free, last (result, slot) ; 

temp *-  get. stack, space (result, slot,   m,  dope_vector (r)); 

assign2 (temp,   r) ; 

temp; 

ENDP; 
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select2   *- 

PROC(x: ptr.any,   i : int) ptr_any ; 

NT    this returns a pointer to the i-th element of the compound object 

to which x points ; 

DECL   m:mode; 

DECL   prproc.var; 

DECL   temp : ptr _ any ; 

m   ♦-   mval(x); 

p    *-   m . s _ f n ; 

install_ variable (p . formal. parm[l] . name,  NIL,  (   ),   x) ; 

temp   *•   install _ variable (p . formal. parm[ 2] . name,  int, (   ),  NIL); 

val(temp)   *-   i;    make-current(2) ; 

temp   *-    xct(p.body,  name.pdl,  pdl_ index); 

remove m variables (2) ; 

temp   ENDP; 

5.15   PRIMITIVE  PROCEDURES 

A procedure is primitive if it exists in the language but cannot be 

acceptably defined in the language.   Either it is so elementary as to admit 

no definition in terms of simpler notions or it is such that any definition 

would involve machine-dependent concepts.   In either case,  for the purpose 

of formal definition it is a primitive. 

The following listing groups primitive procedures by function.   For 

each procedure the modes of its arguments and result is specified by a 

pseudo procedure heading;  its operation is described in English.   Where 

appropriate,  citations are made to more complete descriptions elsewhere 

in this paper. 
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5.15.1 Equality Tests 

equal, int   ~   PROC (x: int,  y : int) bool; 

equal.bool   ~   PROC (x: bool,  y : bool) bool; 

equal, char   ~   PROC (x: char,  y : char) bool; 

equal.ptr   **   PROC (x: ptr_ any,  y: ptr _ any) bool; 

Each procedure returns TRUE iff x is equal to y; i.e., identical bit 

patterns — the number of bits being fixed for each procedure in any 

given implementation. 

5.15.2 Arithmetic Operations 

>    ~ 

PROC (x : int, y : int) bool ; 

Returns TRUE iff x is greater than y. 

+,   -,  *,   / 

PROC (x : int,  y : int) int; 

The four procedures +,   -,  *,   / have conventional meaning (addition,   sub- 

traction,  multiplication,  division) over the integers. 

5.15.3 Pointer Operations 

val    ~ 

PROC (p : ptr _ any) mval( p) ; t 

val(p) is the object to which p  points. 

'Strictly speaking,  this construction is not permitted by the concrete 
syntax,  for the re suit-type is neither a mode -constant nor an identifier 
(c.f. §5.12.1).   The above usage is intended only to be notationally 
suggestive. 

308 



mval   ~ 

PROC (p : ptr . any) mode ; 

mval(p) is the mode of the object to which p points.   Note that the type- 

conversion rules for pointers are such that mval(p) is well-defined for 

any p whose mode is of class ptr.   One special case of mval bears mention: 

if p = NIL then mval(p) = NONE. 

5.15.4 Code Operations 

xct   ~ 

PROC (c : machine, code,  name_pdl: pdl,  pdl _ index: int) ptr «any ; 

This executes the block of machine code c  in the environment defined by 

name-pdl and pdl-index,  producing a value Ü.   The result of xct is a 

pointer to 0\ 

5.15.5 Input/Output 

The I/O routines assume that there exist two files — one for input and one 

for output. 

read „form   ~ 

PROC (   ) form ; 

Reads one form.   (This uses the parser discussed in section 4.3.1 and per- 

forms transformation to internal representation;  c.f. section 5.1.3.) 

write _ char   ~   PROC (x : char) none ; 

write, int   ~   PROC (x: int) none ; 

write.bool   ~   PROC (x: bool) none ; 

Each of these three procedures writes an object of fixed type onto the output 

file.   The output is such that read-form will read in the object correctly. 
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5.15.6   Mode Operations 

build_ row. assigner   ~ 

PROC (m: mode,  1: int) proc.var ; 

Constructs and returns a procedure which performs assignment for objects 

of type 911 defined by  m and 1 as follows.   If 1 ^ 0 then 3TC is ROW(l, m); 

otherwise 3ft is length unresolved ROW(m).   The constructed procedure is 

equivalent in its action to 

PROC(left: OH BYREF,  right: 3H) none; 

FOR   i -   1, ...,  min(length(left),  length(right))      DO 

left[i]   -   right[i]; 

ENDP 

build_ struct _ assigner   ~ 

PROC (d : struct _def) proc_var; 

Constructs and returns a procedure which performs assignment for objects 

of type 3H,   defined by d  in the following sense:   if C has mode 9H,  the i 

component of C has mode  d[i] .type  (c.f. §5.9.4 for a definition of struct-_def). 

The constructed procedure is equivalent to 

PROC (left: 9TC BYREF,   right: 9TC) none; 

FOR   i *-   1, ...,  length(d)   DO   left[i]  *■  right[i]; 

ENDP 

build, row_ selector   ~ 

PROC (m: mode,  1: int) proc.var; 

Constructs and returns a procedure which performs selection on objects of 

type ffl defined by m and  1 as follows.   If 1 ^ 0 then 311 is  ROW(l,m);  other- 

wise,   3IZ is length unresolved  ROW(m).   The constructed procedure has the 

heading 
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PROC (x: 9TC BYREF,   i: int) m ; 

It returns the i     component of x provided that  1 ^ i ^ length(x);  otherwise, 

it calls error ("selection-error"). 

build m struct_ selector   ~ 

PROC (d : struct. def) proc . var ; 

Constructs and returns a procedure which performs selection on objects of 

type 9H,  defined by d in the following sense:   if @ has mode 911,  the i 

component of Ü has mode  d[i] .type.   The constructed procedure has the 

effective heading 

PROC (x: 3TC BYREF,   i: int) d[i] . type ; 

It returns the i     component of x provided that  1 < i ^ length(d);  otherwise, 

it calls error ("selection-error"). 

build . ptr.assigner   ~ 

PROC (m: mode) proc. var; 

Constructs and returns a procedure ^ which performs assignment to objects 

of mode 3TT = PTR(m).   0> has the heading 

PROC (left: 311 BYREF,   right: 3TC) none; 

Note that both arguments to & must have mode 3TC. 

build, united, pointer _ as signer   ~ 

PROC (ms : modep) proc .var ; 

Constructs and returns a procedure 0> which performs assignment to objects 

of mode 9R =PTR(ms[l],  ms[2], . . .,  ms[length(ms)]).   If we define 

371' a RANY(ms[l],  ms[2],   . . .,  ms[length(ms)]) then 0> has the heading 

PROCUeft: 3TC BYREF,   right: 9TT) none; 
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Note that & performs two conceptually distinct actions:   (1) copying the 

pointer right into the pointer left,  (2) arranging that dynamic type of left 

is properly adjusted such that mval(left)   = mval(right). 

5.15.7   Storage Management 

allocate   ~ 

PROC (m : mode,  d : intp) PTR(m) ; 

Obtains from the heap a block of storage large enough to hold an object 

with mode  m and dope vector d.   All length fields which occur  in the block 

are given values in accord with d and the block is initialized to the default 

value of m by a call on initialize (c.f. §5.14).   The result of allocate is a 

pointer to the block,  i.e.,  the allocated object.   If a satisfactory block 

cannot be obtained from the heap,  reclaim is called.   If afterward a block 

still cannot be obtained,  error ("allocate-error") is called. 

reclaim   ~ 

PROC (   ) none ; 

Causes a garbage collection which reclaims all previously allocated blocks 

that are no longer referenced (c.f. §4.3.2). 

Iength2   ~ 

PROC (p : ptr_ any,  i:int)int; 

Obtains the i     element of the dope vector which describes the object to 
XL 

which  p  points.   If there is no i     element of that dope vector,  length2 is 

undefined. 
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5.15.8 Stack Operations 

get _ stack, space   ~ 

PROC (s : stack, ptr,  mrmode,  d : intp) ptr.any; 

Identical to allocate (m, d) except that 

(1) the storage is obtained from the STACK to which s points,  rather than 

from the heap, 

(2) the result is a ptr-any which references the allocated object rather than 

a PTR(m), 

(3) if there is insufficient space in the STACK to satisfy the request, 

error ("stack-space-error") is called. 

free .last   ~ 

PROC (s : stack, ptr) bool; 

Frees the last block obtained from the STACK to which s points and returns 

TRUE,   provided that the STACK is not empty.   If the STACK is empty, 

free-last returns FALSE. 

last.in   ~ 

PROC (p :ptr _ any,  s : stack, ptr) bool ; 

Returns TRUE iff the object pointed to by p  is (or is part of) the most 

recently allocated block in the STACK pointed to by s. 

5.15.9 Miscellaneous 

pack   ~ 

PROC (s:string) symbol; 

Returns a pointer to the symbol table element (c.f. §5.5.3) for the identifier 

whose printed representation is the string s.   If no such element exists, 

one is created. 
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install _ initial _ environment   ~ 

PROC (name _ pdl: pdl,  index: int, value m stack: stack, ptr) none ; 

Installs the initial environment in which evaluation of ELI programs takes 

place by putting on the name-pdl and value-stack initialized variables for 

all procedures which may be used in the language without definition;  i.e., 

eval and all procedures in §5.15, 16. 

error2   ~ 

PROC(   ) ptr „any; 

The inner routine for processing errors.   Its action depends on the imple- 

mentation. 

5.16   BUILTIN  PROCEDURES 

In the interest of convenience and efficiency,  a number of procedures 

which are not logically primitive are predefined.   That is, they exist in the 

initial environment and may be used without definition by an ELI program. 

(They can,  however,  be redefined by the program.) 

The definitions given here should be taken as specifying the result of 

a builtin procedure;  for reasons of efficiency,  these results may be actu- 

ally obtained more directly than is indicated by the definition.   However, 

the actual procedure is strongly equivalent to the defined procedure:   it 

produces identical results and side effects. 

5.16.1   Logical Operations 

not   +- 

PROC(prbool) bool; 

p   -»   FALSE;    ELSE TRUE ; 

ENDP ; 
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A    - 

PROC (p : form UNEVALED,   q : form UNEVALED) bool ; 

eval.to.type(p, bool)   =»   eval_to.type(q, bool) ; 

ELSE  FALSE; 

ENDP; 

V   *- 

PROC (p : form UNEVALED,   q: form UNEVALED) bool; 

eval_to.type(p, bool)   =>   TRUE; 

ELSE  eval_to.type(q, bool); 

ENDP; 

5.16.2   Equality Tests 

The two tests  = and * require a mode definition 

simple.type   «=   RANY(int,  bool,  char,  ptr.any); 

Using this we define 

PROC(x: simple „type,   y: simple „type) bool; 

typ(x) * type(y)   -*   FALSE ; 

typ(x)   =   int   =*   equal. int(x, y); 

typ(x)   =   bool  =*   equal, bool (x, y); 

typ(x)   =   char  =»   equal, char (x, y) ; 

typ(x)   =   ptr.any  =>   equal. ptr(x, y); 

ENDP; 

PROC (x: simple „ type,   y: simple . type) bool; 

not(x = y)      ENDP; 
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5.16.3 Arithmetic Operations 

^    <•- 

PROC(x:int,   y:int)bool; 

x   >   y    ->     TRUE ; 

ELSE   equal, int (x, y) ; 

ENDP; 

The binary operators  ^   and < are defined analogously. 

sign   - 

PROC(x: int)int; 

x >  0   =>    1 ; 

0  >  x   =*    -1; 

ELSE   0; 

ENDP; 

5.16.4 Input/Output 

read   *- 

PROC(m: mode) m; 

NT   read(m) returns an object of mode  m.   For example, 3 + read(int) is legal; 

eval_ to_ type (read.form(   ),  m) ; 

ENDP; 
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write „symbol   *■ 

PROC (s : symbol) none ; 

NT   write, symbol(s) outputs the print.name of s as a sequence of 

characters; 

FOR   i *-  1, . .., length(val(s) . print.name)   DO 

write.char(val(s) . print.name[i]); 

ENDP ; 

5.16.5   Miscellaneous 

typ   *- 

PROC (x: form UNEVALED) mode ; 

NT   typ(x) returns the mode of x; 

mval ° eval (x); 

ENDP ; 

length   *- 

PROC (x: form UNEVALED) int ; 

NT   length(x) is the number of components in x,  provided that x is a row. 

If x is a pointer it is dereferenced and length of the result is taken. 

If x is neither a row nor dereferenceable to a row, then an error occurs; 

DECL   piptr.any; 

p   *-   dereference o eval(x) ; 

mval(p) . class * "row"   =»   error ("length, error") ; 

mval(p) . d . length ^ 0 =»  mval(p) . d . length ; 

ELSE   length2(p, 1); 

ENDP; 
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5.17   INDEX TO SECTION 5 

Given below are indices to the procedures and modes used in the 

formal specification of section 5. The citation gives the sub-section 

in which the formal definition occurs. 

5.17.1   Procedures 

allocate   5.15.7 

apply   5.13.4 

apply 2    5.13.4 

assign   5. 6. 4 

assign2    5.14 

bind-formals    5.13.4 

build_ptr_assigner   5.15.6 

build_row_assigner    5.15.6 

build_row_selector    5.15.6 

build_struct_assigner   5.15.6 

build_struct_selector   5.15.6 

build_united_ptr_assigner   5.15.6 

checkproc   5.6.4 

compatible    5.14 

dereference    5.10.4 

dope_vector   5.14 

equal_bool   5.15.1 

equal_char    5.15.1 

equal _int   5.15.1 

equal-ptr   5.15.1 

error   5.14 

error2    5.15.9 

ev_aggregate    5.11.4 

eval   5.3.5 

ev_binary_op   5.6.4 

ev_clause   5. 7. 4 

ev _ c ons tant   5.4.4 

ev_declarations    5.13.4 

ev_iteration   5.8.4 

ev_mdef   5.9.5 

ev.mform   5.9.5 

ev.program   5.3.5 

ev.ptr   5.9.5 

ev.rany   5.9.5 

ev.row   5.9.5 

ev_selection   5.10.4 
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ev-statement   5.7.4 

ev-statementp    5.7.4 

ev-struct   5.9.5 

ev-symbol   5. 5. 4 

eval-to-type   5.14 

field .index   5.10.4 

free-last   5.15.8 

get-stack-space   5.15.8 

initialize   5.14 

ins tall-initial-environment   5.15. 9 

install_variable   5.14 

iterate   5.8.4 

iterate _with_test   5.8.4 

last-in   5.15.8 

length   5.16.5 

length2   5.15.7 

make-current   5.14 

mval   5.15.3 

not   5.16.1 

pack   5.15.9 

proc.exit   5.13. 4 

pure-value   5.14 

read   5.16.4 

read-form   5.15.5 

reclaim   5.15.7 

remove-variables    5.14 

resolve   5.13.4 

return.result   5.14 

save   5.10.4 

select2   5.14 

sign   5.16.3 

typ   5.16.5 

val   5.15.3 

write_bool   5.15.5 

write-char   5.15.5 

write_int   5.15.5 

write-symbol   5.16.4 

xct   5.15.4 

/     5.15.2 

- 5.15.2 

+ 5.15.2 

*     5.15.2 

- 5.16.2 

/ 5.16.2 

A 5.16.1 

V     5.16.1 

> 5.15.2 

> 5.16.3 

< 5.16.3 

< 5.16.3 
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5.17.2.    Modes 

aggregate   5.11. 3 

binary.operator    5.6.3 

bool   5.1.5 

char    5.1.5 

clause    5.7.3 

code-formal   5.12.4 

code-formalp    5.12.4 

code_procedure   5.12.4 

compound .form   5.7.3 

constant   5.4.3 

ddb   5.9.4 

declaration   5.12.3 

declarationp    5.12.3 

explicit-procedure    5.12.3 

expr.formal    5.12.3 

expr-formalp    5.12.3 

form   5.3.3 

formal-parameterp    5.12.4 

formp    5.13. 3 

int   5.1.5 

iteration   5.8.3 

machine.code   5.12.4 

m-def   5.9.3 

m_form   5.9.3 

mode    5.9.4 

modep    5.9.4 

name_pdl_element   5.3.4 

none    5.1. 4 

pdl   5.3.4 

procedure »application   5.13. 3 

procedure-block   5.12.4 

proc.var   5.12.3 

program   5. 3. 3 

ptr.any   5.1. 5 

ptr_form   5.9.3 

rany_form   5. 9. 3 

row.def   5.9.4 

row_form   5.9.3 

selection   5.10. 3 

s imple -type    5.16.2 

stack.ptr    5.3.4 

statement   5.7.3 

s tatementp    5.7.3 

string   5.5.3 

struct_def   5.9.4 

struct-def-component   5.9.4 

struct-form   5.9.3 

symbol   5. 5. 3 

symbol «table «element 5.5.3 

symbolp    5.12. 3 

type-descriptor   5.9.4 
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Section 6.   SYSTEM AND IMPLEMENTATION ISSUES 

In this section we continue the topic begun in section 4:   describing 

those aspects of the language and the system in which it is embedded which 

are not amenable to formal specification.   Whereas section 4 dealt with 

fairly general topics, here we treat more specialized issues whose presen- 

tation requires concepts or definitions developed in the formal specification. 

6.1   ASSIGNMENT  FUNCTIONS,  SELECTION FUNCTIONS, 
AND STORAGE  FORMATS 

Implementing the assignment and selection functions in an open-ended 

data type scheme requires interaction between (1) the construction functions, 

e.g.,  build-row-selector,  and (2) the internal format of data storage blocks 

as established by allocate and the stack manager.   To discuss the internal 

format,  we begin with the role of the dope vector in establishing object 

sizes. 

Let 9H  be a mode with n length unresolved dimensions;  i.e., 

9H. dope-length = n (c.f. §5.9.5).   Hence, to completely specify an object Ü 

of mode 911,  n distinct lengths must be supplied.   If ^ is a vector of i 

integers (i.e.,  typ(^) = INT and length(^) = n) then Q and 9TC specify an 

object C as follows.   In a top-to-bottom,  left-to-right treewalk of the 

descriptor of 9H,  let the i     unresolved dimension be ^[i] .   In the degener- 

ate case where 3H is length resolved, n = 0 and & has length 0. 

The following convention is used in establishing the internal format of 

all data storage blocks:   if O is an object with mode 9H and dope vector Q, 

then associated with Ü is a set of n integers which specify dope infor- 

mation.   In obtaining the block for Ü on either the heap or a stack, the 

system provides the additional storage this requires and sets up the dope 
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information in the appropriate positions/    Subsequently,  the dope infor- 

mation cannot be changed but can be interrogated by the primitive function 

length2 (c.f. §5.15.7).   Several points should be noted. 

(1) If 311 is fully length resolved (e.g.,  ROW(3,INT)) then no dope infor- 

mation is carried with 0,  so that modes of maximal binding are handled 

efficiently. 

(2) The set of n integers  which is  carried with 0 to specify dope infor- 

mation is not an intp.   If it were,  a dope vector would be required to specify 

the length of the intp;  consistency leads to an infinite regress. 

(3) In some cases,  this scheme is quite redundant.   Since each component 

of 0 will have its own dope information if its mode is length unresolved, 

identical information may appear in several places;  e.g.,  consider 

R(R(CHAR) ).   However, the additional storage occupied will in general be 

a small price to pay for the generality and speed this scheme affords. 

In the case of a row in which the mode of the components is length 

unresolved,  one additional piece of information is stored with the object: 

the component size.   This specifies the length,  in machine-dependent 

storage units,  of a single component and is calculated when the row is 

created.   It is used by the selection function in calculating the location of 

the i     component. 

^Calculation of the amount of storage required and initialization of this 
storage may be carried out either (1) by a single routine which takes 3R 
and ^ as arguments,  or (2) by a set of routines,  one for each mode, 
taking only the single argument @.   In the latter case,  the routine is 
constructed when the mode is defined.   In this case,  the ddb is defined 
to have an additional component,  "storage-fn",  which holds the routine. 
Use of a storage function for each mode requires more space and is 
somewhat more difficult to implement than a single routine;  however, 
the faster operation it provides will very likely make it worthwhile. 
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To complete description of the storage format,  it is necessary to 

specify how the components of rows and structs are stored.   Rows are 

simply stored sequentially;  however,  the layout of structs is somewhat 

more complicated.   If all components (or all but the last) are length 

resolved, then they are stored sequentially;  otherwise,  each component 

which is not length resolved is replaced by an internal pointer which points 

to the location in the block (relative to the block origin) where the com- 

ponent is actually stored.   Components which are so replaced are actually 

stored sequentially following all the others.   For example,   consider 

m   -   STRUCT (fieldl : CHAR, 

field2 : R (complex) , 

field3 : R (BOOL) , 

f ield4 : INT , 

field5 : R(PTR.ANY)) 

An object € of mode  m consists of 

(1) a dope vector for 0 consisting of 3 integers, 

(2) a CHAR,  i.e.,  "fieldl", 

(3) an internal pointer to (8), 

(4) an internal pointer to (10), 

(5) an INT,  i.e.,  "field4", 

(6) a dope vector for "fieldö", 

(7) a R(PTR_ANY),  i.e.,  "field5", 

(8) a dope vector for "field2", 

(9) a R(complex),  i.e.,  "field2", 

(10) a dope vector for "field3", 

(11) a R(BOOL),  i.e.,  "field3". 
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The internal pointers make it possible to obtain the i     component of a struct 

without calculating the size of all j - 1, 2, ..., i- 1  components. 

Given the storage format,  techniques for calculating the storage map- 

ping function are well-known.   An algorithm is given in [Hoff62] and an 

improved version in [Deu66] for the special case that all primitive data 

types require an equal number of storage units and layout is strictly 

sequential.   Adaptation of this algorithm to differing size primitive types 

and to use of internal pointers is straightforward. 

The procedures generated by the constructors build-row-assigner, 

build-row-selector,  build-struct-assigner,  and build-struct-selector are 

bound as tightly as the mode definition permits.   Struct selection is always 

immediate,  either because the displacement of the i     component is constant 

or because an internal pointer is used.   Row selection of the i     component 

is by a displacement k« i where  k is either a constant for the mode or is 

stored with the object.   In general,  whenever a length is known,  that know- 

ledge is reflected in the storage functions.   For example,   if a mode is fully 

length resolved, the assignment function is a routine which simply copies the 

appropriate number of storage units; this is a very short loop or possibly a 

single MOVE instruction on some machines.   Similarly,  the check of sub- 

script range in selection functions uses a constant whenever the number of 

immediate components is fixed for that mode. 

6.2   EVALUATOR RECURSION 

In section 5, the semantics of ELI were specified by an evaluator.   To 

use the evaluator as an interpreter for running programs on a computing 

machine,   it must be coded into some language which already runs on that 
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machine.   Typically, this will be assembly code.   The recoding presents 

only one real problem:   all ELI procedures are inherently capable of 

recursion and recursion is used extensively in the evaluator.   Some pro- 

gramming discipline is needed to obtain assembly language routines which 

can operate recursively. 

The essential requirement is that nothing in the program region is 

modified by the program; all storage which would normally lie in the 

program region is placed on a stack created in a separate data region.   It 

is convenient,  in fact, to use two stacks.   One,  called the control stack, 

contains return addresses for all subroutine calls which have been made 

but for which no return has yet occurred,  along with some other control 

information.   The other stack contains internal variables;  i.e.,  working 

storage and the saved values of registers at higher levels.   To decrease 

the number of stacks in the system,  it is useful to make this stack and the 

name-pdl (c.f. §5.3.5) the same,  with entries for internal variables and 

program variables intermixed.   Since the evaluator requires no names for 

its internal variables, the "name" component for these entries can be 

empty or filled in with special system names which do not clash with ordi- 

nary variable names. 

Note that these requirements are almost identical to those for re- 

entrant code which can be used by multiple processes ("tasks" in IBM 360 

parlance).   One copy of the interpreter shared among several ELI 

processes amounts to a nice saving of core.   Hence,  whenever the oper- 

ating system does not make this impossible,  the interpreter will be coded 

and interfaced to allow re-entrant use. 

One related point should be mentioned here.   The formal definition 

specifies that the value-stack,  return-slot,  and aux-return-slot (c.f. §5.3.5) 
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are STACKS in the sense of section 3.16.3.   This is to guarantee,  for the 

purpose of formal definition, that these stacks behave correctly,   i.e.,  that 

the evaluator never uses a pointer to an object which has been freed.   In 

the implementation,  the STACKS will be replaced by ordinary LIFO stacks. 

Guaranteeing that stack discipline is not violated is a burden placed on the 

implementor. 

6.3   STACK OPERATIONS 

Although STACKs   are not to be used in implementing the value-stack, 

the mode is in the language for use by the programmer.    Implementing the 

STACK operations is,  for the most part,   straightforward.    Performing 

sub-allocations within a STACK,   freeing sub-allocations,   and testing whether 

a pointer references the "top" sub-allocation present no great problems. 

The only real issue is guaranteeing that all PTR-ANYs which reference 

freed sub-allocations have the value NIL.. 

A number of possible implementation techniques present themselves. 

The best of these appears to be connecting all pointers to a sub-allocation 

into a doubly linked ring which passes through a control block associated 

with that sub-allocation.    When the sub-allocation is freed,   it is only 

necessary to walk around the ring setting each pointer to the value NIL«. 

The ring is established and maintained as follows; whenever as assign- 

ment of PTR-ANYs such as 

pi     <-  p2 

is made,   pi is removed from its ring and added to p2' s ring.    Typically, 

only one pointer assignment will be made per sub-allocation: the one which 

occurs immediately after the call on get-stack-space.    Hence,   the over- 

head due to ring manipulation should be small. 
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Section 7.   CRITICAL DISCUSSION 

In this section we carry out a critical analysis of ELI and its formal 

definition.   This analysis has several facets.   We begin by describing and 

justifying certain design decisions and examine how these relate to each 

other and to the design goals.   We draw attention to certain language 

features, the reasons for their presence,  and their consequences.    We 

compare ELI to other programming languages and analyze the causes of 

their differences.   Finally,  we assess the formal definition of section 5, 

in particular,  comparing it to the methods of semantic specification dis- 

cussed in section 2.1. 

In analyzing the base of an extensible language, there are two targets 

which can be addressed: 

(1) the base language as it stands, treating it as if it were a fixed, 

conventional programming language, 

(2) the family of languages which can be produced from this base 

by extension. 

One of the chief virtues of an extensible language system is that (1) is un- 

important compared to (2), the point of view being:   if you don!t like it, 

change it.   Hence,  our analysis ignores issues such as syntax'  in favor of 

basic issues underlying the structure of the language.   Our concern is with 

substance,  not style. 

'This is not to say we believe syntax is unimportant.   Quite the contrary, 
we have given considerable attention to the syntax of ELI and are particu- 
larly pleased with its present form.   However,  we recognize that choice 
of notation is subject to personal idiosyncrasy;  what we find pleasing may 
repel another programmer. 
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A word concerning the division of this section into subsections is per- 

haps in order.   While we have placed analysis and comparison in separate 

subsections, there is considerable overlap in their potential range.   The 

analysis of language features can be aided by examination of their counter- 

parts elsewhere,  while the pertinent comparison of languages is carried 

out not by parallel listings of similar concrete forms but rather by criti- 

cal analysis of underlying structures and their interrelation.   Recognizing 

this, the division of topics between the two subsections should be taken as 

somewhat arbitrary.   We have placed a topic in the second when its analy- 

sis depends primarily on comparison and in the first otherwise; however, 

this is only a matter of emphasis. 

7.1   ANALYSIS AND JUSTIFICATION OF  LANGUAGE  FEATURES 

7.1.1   Basic Objects and Storage Blocks 

In section 3.15,  we noted that as one goes deeper into the study of 

data types, the model of storage behavior employed becomes increasingly 

more important.   In that section we argued that recursive modes should 

be excluded from ELI,  on the grounds that they were in various ways non- 

primitive.   Here,  we generalize these considerations. 

The principal axiom which shapes the data type facility in ELI is that 

each basic object resides in a contiguous block of storage which is 

effectively'  fixed during the existence of that object.   By basic object,  we 

mean any object whose mode can be directly defined in the language using 

'No prohibition is here intended against an implementation moving objects, 
e.g.,  to compactify storage.   However,  the language can in no way depend 
on such movement. 
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the mode definition facility of section 5.9.   This is,  of course, a very 

restrictive view of permissible basic objects, but it corresponds well to 

the primitive operations and architecture of current computing machines. 

For example,  we observe that the notion of row is in one sense subsumed 

by linked list; however,  accessing the i     element of a row is a primitive 

operation,  while it requires time i in a linked list.   The identification of 

objects with storage blocks makes implementation in a stack immediate 

and simplifies heap implementation,  for an n-word block is an elementary, 

easily manipulated entity.   We contend that this is the only admissible 

representation for basic objects.   In so doing,  we insure that the data 

types on which extensions are built have behavior which is well-matched 

to the available hardware.   The importance of an impedance match here 

should be obvious. 

In consequence, the mode definition facility of ELI is restrictive. 

Not only do we rule out recursive modes, but also arrays with flexible 

bounds.   The latter are admissible in various forms in several languages, 

notably:   GPL [Gar68] ,  Basel [Jorr69] ,  and Algol 68 [vanW69] .   There 

are,  of course several strategies for implementing such arrays,  with 

various trade-offs between them depending on the expected traffic.   GPL 

and Basel each use a different strategy,  carry around the mechanism to 

implement the chosen strategy,  and provide no control over this to the 

programmer.   However, this is precisely the sort of inflexibility and over- 

head one sought to escape in an   extensible language.   We argue that the 

proper approach is to obtain extendible arrays by extension — several 

extensions for several different traffic patterns. 

Other classes of non-basic objects will similarly be obtained by 

extension.   That is,  taking basic objects as building blocks,  one constructs 
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distributed objects and higher-level objects by pointer-linkage,  remapping 

functions,  and similar formation rules.   To describe such objects,  we 

require higher-level modes which cannot be defined directly by the exist- 

ing mode definition facility,  but which can be constructed from basic 

modes with a small amount of additional mechanism.   We present this 

mechanism as a metaphrase extension in section 8.4.   Here,  we wish to 

emphasize that restricting the basic objects does not restrict the semantic 

space of the language;  it only sharpens the base component. 

7.1.2   Global Storage Model 

Just as the contiguous-fixed-block requirement shapes the treatment 

of modes and the local issues in storage,  certain global aspects of the 

storage model shape other portions of the language.   As discussed in 

section 4.3.2,  ELI uses both a stack and a heap for its storage.   Stack 

storage is strictly governed by procedure entry and exit; heap storage is 

created by calls on allocate and reclaimed by garbage collection. 

Some consequences are obvious.   Provision for dynamic storage allo- 

cation in the heap allows list processing and opens the language to numer- 

ous important applications which require list processing:   artificial intelli- 

gence,   symbol manipulation,  and graphics, to name a few.   Linking the 

stack storage to procedure calls admits recursion but makes somewhat 

difficult any call structure other than nested procedure calls. 

'Note,  however,  that other call structures are not excluded.   Many can be 
obtained by extensions.   To obtain co-routines,  for example,  it is neces- 
sary to provide (1) storage which is not destroyed when the co-routine is 
exited,   (2) record of where a co-routine is exited,  (3) a call structure 
which recognizes a co-routine call and handles it specially.   The heap pro- 
vides storage for (1) and (2) so that the only real issue is (3) and this is 
independent of the storage model. 
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However,  other consequences are more subtle.   For example,   since 

a garbage collector is used,   it is necessary to check subscript range on 

access to rows.   Indeed,  were an assignment made out of range,  it would 

clobber some random word in the address space;  if the word,  or part of 

the word,  were in use as a pointer and were traced,  the garbage collector 

would be hopelessly fouled.   While out-of-range register clobberings may 

occur in any language, the existence of a garbage collector makes it a 

global and hence unacceptably dangerous error.   The use of garbage col- 

lection is also partly responsible for the policy of initializing all objects 

and for inclusion of the function length.   While each can be justified on 

other grounds,  garbage collection would alone suggest their appearance. 

In all blocks allocated to hold variables,  pointers must be initialized to 

NIL,  otherwise random trash may be erroneously traced.   The obvious 

generalization is to initialize all objects.   Objects of length unresolved 

mode must carry a length field for use by the garbage collector;  since the 

length field exists,  we give the programmer (fetch only) access to it. 

A deeper consequence stems from the protection produced by garbage 

collection.   Since storage cannot be explicitly returned to the heap,   it is 

impossible to return an object having forgotten that a pointer  p still 

references it.   This is easy to do in a system which allows explicit return. 

(The return alone causes no trouble,  but if the space is later reused,  then 

fetches through p produce trash and assignments clobber random words.) 

A garbage collection system prevents such errors occurring when the 

referenced block is in the heap.   However,  it may still be possible to 

produce a similar error if there is a pointer into some area of the stack 

which is freed (on procedure exit) and later reused (for another procedure 

activation).   Precisely this sort of situation and error can occur in Algol68. 
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If such a misuse of pointers occurs,   the official Report specifies that 

the program is undefined,   but the error may not be detected in all 

implementations.    ELI,   on the other hand,   provides complete pro- 

tection against storage violations by prohibiting pointers into the stack. 

That is,   the language is so designed that there is no way of getting a 

pointer to reference a stack location (cf.§3.9.4).    While this excludes 

from ELI a number of constructions found in Algol 68,   many of these 

are not really useful.    Most of the useful ones are obtained in ELI 

through other mechanisms which permit protection against their mis- 

use  (e.g.,   cf.  §7.2.2). 

To conclude this subsection,   it may be useful to question,    rhe- 

torically,   our choice to use a garbage collector.    Three alternatives 

present themselves:   (1) to allow explicit freeing but also garbage 

collect,   (2) to require explicit freeing as the only way of recovering 

storage,  (3) to use some other automatic reclamation technique. 

Proposal (1) has been tried with disappointing results [Bobr69]  .     When 

an explicit free command was added to Lisp 1. 5,   it was found to be 

frequently used illegally.    That is,   blocks were inadvertently freed 

while pointers to them remained active; the resulting pointers into 

the free-list caused havoc.    Proposal (2) is more consistent; placing 

all burden of reclamation on the programmer clearly fixes the 

responsibility.    However,   the burden may well prove too heavy.    Our 

experience has been that algorithms which make extensive use of heap 

storage are sufficiently complex that the suppression of bookkeeping 

provided by garbage collection is well worth the price.    Turning to (3), 

332 



the difficulty is that alternative methods of automatic reclamation 

are not altogether satisfactory.    The best of these,   reference counts 

(e.g.,   cf.   [C0II66] ),  fails to return block sets forming a self- 

referencing net.    Since such nets may be expected to occur frequently, 

the resulting loss of storage will be unacceptable.    Further,   refer- 

ence count systems are particularly poor in paged environments 

where the act of fetching the blocks referenced in order to change their 

use counts may involve additional references to secondary storage, 

at considerable cost in time. 

7.1.3    Primitive Modes and Mode Definitions 

Of the seven primitive modes in ELI -INT,   BOOL,   CHAR,   STACK, 

PTR-ANY,   NONE,   and NONEREF - all but the first three are un- 

conventional.    The motivation for STACK has been discussed in 

section 3.16. 3; here,  we treat PTR-ANY,   NONE,   and NONEREF. 

A PTR-ANY is a general handle on the heap.    As it may reference 

any allocatable object,   it allows the writing of procedures which can 

manipulate literally any sort of data object.    As such,   PTR-ANY 

provides a weak,   i. e. ,   one pointer level off,   substitute for the data 

type any which has been proposed in some extensible languages. 

Implementing PTR-ANY is fairly straightforward.    One tech- 

nique is to allocate for each PTR-ANY enough storage to hold two 

addresses — one for the location of the object referenced and one for 

the location of the object* s ddb; the second address carries the type 

information.    Alternatively,   it is possible to divide the heap into 
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quantum zones,   each containing a unique mode of object (cf.  § 4. 3. 2); 

in such a system,   each PTR-ANY requires storage to hold only one 

address,  for the type information is carried implicitly in the address 

of the object. 

However,   code generation by a compiler for PTR-ANY's presents 

a problem.    Certain special cases such as the top-level occurrence 

of 

mval(p)  =   amode    =>     BEGIN .   .   .   END 

allow determination of mode in local regions (here,   in the compound- 

form) and hence make possible reasonable code generation.    However, 

in general,   the compiled code will be heavily interspersed with calls 

on the interpreter. 

This requires some refinement when an object contains components 
(whose mode differs from that of the object) and it is desired to point 
to a component; the mode of the component is not in agreement with 
the region in which it is located.    In such cases,   it is necessary to 
have the PTR-ANY address a special link pointer which contains two 
addresses — one for the component and the other for the component' s 
ddb.     That is,   this scheme attempts to use a single pointer with 
quantum zone data typing whenever possible and uses a modification 
of the other scheme as a fall-back position when this is not possible. 
This technique will be more efficient if and only if the fall-back 
position is taken only infrequently. 
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The modes NONE and NONEREF verge on triviality,  for they each 

have a single value:   NOTHING and NIL,  respectively.   While their exist- 

ence is slightly displeasing,  as they raise the number of primitive modes 

from a reasonable 5 to a suspiciously large 7, they appear to be unavoid- 

able.   Since every procedure has a result, there must be some way to indi- 

cate that a result is of no interest and should be ignored,  hence the mode 

NONE to use as a return-type declarer.   A mode is barren without values, 

hence the value NOTHING. 

The mode NONEREF,   on the other hand,  arises from its value,  NIL. 

We need NIL as a dummy value for pointers.   Otherwise,'  each object of 

mode PTR (9ft) requires some 9?l to point to; this may be undesirable when 

3H's are large.   The value NIL requires a mode,  hence NONEREF.   Note 

that ELI does not identify the notions of NOTHING and NIL.   Hence,  it is 

possible to distinguish between (1) a procedure returning NIL,  a value which 

may be validly assigned to a pointer,  and (2) a procedure which returns 

NOTHING.   Blurring this distinction would,  we believe,  merely weaken 

the language. 

Several of the data type definitions used in the evaluator of section 5 

perhaps require discussion,  for they use a common device that may be of 

general utility:   representing a notion by the data type PTR(notion).     For 

example,  (1) a symbol is defined as a ptr to a symbol table entry, 

(2) a mode is defined as a ptr to a ddb which contains the mode definition, 

'A third possibility is to have a distinctive nil value for each mode,   i.e., 
a PTR(9Jl) either points to an 911 or the nil- 9tl.   However, this appears to 
be more complex than a single NIL and offers no compensating advantages. 
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(3) a proc-var is a ptr to an explicit procedure which is the defining block. 

We use the semantically loaded term,  not to name the mode of the objects 

which directly represent the term but rather to name the mode pointer-to- 

such-objects. 

This is done partly for reasons of efficiency.    By using symbols 

instead of character strings to represent the notion of symbolhood,  we 

allow names of unlimited length,   speed up equality tests,   simplify storage 

management,  and usually save on storage.   Similarly,  a pointer to a ddb 

is generally as satisfactory as the ddb itself,  but uses far less space. 

This pointer transformation is also due in part to the fixed-block 

axiom discussed in section 7.1.1.   The axiom fares poorly if we attempt 

to apply it to variables of certain intuitively reasonable data types,  most 

notably "procedure".   That is,   if  p  is declared a procedure-valued 

variable,  we would like it to hold any procedure.   Since the defining blocks 

come in various sizes,  the correspondence of procedure-valued variable 

and defining block fails.   As a fallback position,  we form the correspond- 

ence between procedure-valued variable and a ptr to the defining block. 

It should also be noted that,   quite aside from assigning semantically 

loaded words,  the use of PTR (notion) is an example of one of the most 

widely applicable sorts of distributed objects (cf. §7.1.1). 

One additional point should be raised in conjunction with the represen- 

tation of "procedure" by data types.   In ELI,   procedure-valued variables 

are only weakly typed;   i.e.,  having declared the variable  p to be a proc- 

var,  we can assign to it any procedure.   In contrast,  declarations of 

procedure-valued variables in Algol 68 restrict the sorts of procedures 
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which can be so assigned.   For example,  consider' 

DECL   p : PROC (INT, complex) CHAR; 

The variable p can be assigned only those procedures which accept two 

arguments, an INT and a complex, and deliver a CHAR. We say that in 

Algol 68,   procedure-valued variables are strongly typed. 

While this difference of Algol 68 and ELI may appear striking,  it 

arises in a natural way from the evaluator models assumed by the languages: 

a compiler and interpreter,  respectively.   To perform type checking when 

compiling code for calls on p,  one wishes to know how many arguments it 

is supposed to take and of what mode.   Hence,  Algol 68 constrains the 

variability of p.   If,  however,  interpretation is performed,  there is no need 

to impose such restrictions.   We point out this difference in the two 

languages primarily to minimize its significance.   Ultimately,  a compiler 

will be written for ELI.   To allow reasonable compilation,  we will impose 

certain requirements on programs to be compiled.   One such restriction 

will be strong typing of proc-vars. 

7.1.4   L-Values 

ELI is unique among algorithmic languages in that all values are L- 

values;  i.e., the locative condition holds.   In section 3.13,  we discussed 

the locative condition and the language features to which it gives rise. 

Here,  our concern is with analysis of the concept. 

First,  it should be recognized that the locative condition imposes 

constraints on the implementation.   In programming languages not using 

'To make this readable by those not familiar with Algol 68,  we use the 
notation of ELI.   We emphasize,  however, that this illustrates the con- 
vention of Algol 68,  not ELI. 
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the locative condition,  the implementation is free to represent most values 

as either (1) the value stored in a register,  say an accumulator,  or 

(2) as a pointer to the value which is stored in memory.   For example, 

if   b   then   x   else   y 

may either (1) leave in a full-word accumulator the value of x (or the value 

of y) or (2) leave in an index-register a pointer to the address where  x 

(or y) is stored.     The  implementor  is free to choose between (1) and (2), 

depending on the size of x and y,   storage operations on his machine,  and 

similar considerations.   The locative condition,  however,   permits 

(if   b   then   x   else   y)    *-      z 

and hence prohibits use of (1),  (except perhaps in compiled code where 

inspection of the surrounding program insures that (1) is "safe"). 

In consequence,  the implementation space is constricted and certain 

common techniques cannot be applied.   There may be special difficulty 

where an object is smaller than a machine word and does not begin on a 

word boundary.   Depending on the degree of fineness in the machine's 

address structure and the degree of fineness required by the position of 

the object,  an address may have to be supplemented by additional bits 

specifying interaddress precision.   On the other hand,  the restriction is 

not as onerous as it may first appear.   For almost all machines,  pointer 

representation is the only way of handling objects larger than one or two 

machine words.   In a language such as ELI,  where composite objects are 

common and can be transacted with directly,   pointer representation will 

be the natural implementation technique for most situations. 

In general,  the advantages of the locative condition far outweigh the 

difficulties it causes.   It makes possible efficient and uniform call by 
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reference,  for given a  pointer to the argument, the name and argument 

can be simply tied via an indirect-cell.   Also,  it simplifies the interaction 

of selection and assignment.   Consider, for example, the two forms 

x. a    *-    y 

x.a     +   y 

Note that the first form requires an L-value and hence the implementation 

must possess a selection function which yields an L-value.   If we decide to 

use a nonlocative representation for x. a in the second case, then the 

implementation is forced to carry two distinct selection functions.   Further, 

the evaluator is complicated by being required to pass along information 

as to whether a form is being evaluated as an L-value or an R-value. 

In the semantic formalism of section 5,  the locative condition is mani- 

fest as follows:   an object @ in the program being interpreted is handled 

by a PTR-ANY & of the evaluator.   That is, the pointer assumed by the 

locative condition appears explicitly.   Hence, the evaluator can change the 

contents of € or establish the binding pattern required by BYREF bindings 

with no difficulty. 

The effect of the locative condition is very closely related to a con- 

vention adopted in Algol 68.   Consider,  for example, the ELI declaration 

DECL   i : INT ; 

or the equivalent Algol 60 declaration 

int   i; 

To obtain the same effect in strict (cf. §2.2.2) Algol 68,  one writes 

ref int i    =    loc  int; 

This may be interpreted as follows.   The external object i,  which is an 
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identifier,  corresponds to an internal object  i of mode ref int;  i contains 

a pointer to an object of mode int which has been allocated on the stack for 

locals.   An Algol 68 assignment 

i   :=   3 

is then interpreted as 

(1) take the contents of i, this being the address of a position 

on the stack which has been reserved to hold ints, 
(2) take the value 3, 

(3) store 3 into the stack position obtained in (1). 

That is,  the assignment operator here takes the address of an int as its 

left operand and an int as its right operand.   Algol 68 does not use the 

locative condition.   Instead,   it uses the data type ref W where ELI would 

use 9TC.   The two languages achieve similar effects by different devices. 

ELI's method seems to permit simpler and more consistent languages, 

for it avoids the necessity of using a ref 3TI where intuition,   inspired by 

the tradition of Fortran and Algol 60,  would suggest an ffll. 

7.1.5   Names and Values 

As it currently stands,  ELI adopts the rule that in any given scope an 

identifier can be associated with at most one value.   This is the convention 

adopted by Algol 60, Algol 68,  and most other programming languages. 

However,   in some languages (e.g., BBN Lisp 1.85 [Bobr68]   and THE BRAIN 

[Win69] ) it has been found convenient to allow an identifier to be associ- 

ated with two or more values of different types.   Context determines which 

value is intended.   Typically,  a fixed number of distinct values of pre- 

scribed types is permitted,  with one value slot being devoted to procedures. 

It is possible to go one step farther and allow different values to have 

different scope rules.   For example,  Bobrow [Bobr69] argues that humans 

tend to treat procedures differently from other sorts of values. 
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Procedures, he argues,  are generally thought of as global entities,  defined 

at the outermost level,  and having scope throughout the entire program.   The 

realization of this  in BBN Lisp  is that the procedure corresponding to 

a given identifier is found by checking the top-level function-cell associated 

with the symbol table entry for that identifier.   A second-order scope rule 

provides that if the function-cell is found to be empty, then the "normal" 

value which has block structure scope rule is considered.   For example, 

consider activation of the following procedure' 

PROC(p: proc.var,  x: INT) BOOL;   p(x)   ENDP ; 

In the form "p(x)M,  p will be taken to denote the top-level function-cell 

value of p  if such a value exists;  otherwise,   p will be taken to denote the 

first argument to the procedure.   That is,  the procedure named "p" which 

is applied to x may or may not be the first argument.   However,  since 

context information is not passed down to subevaluations in BBN Lisp,  the 

seemingly equivalent form 

PROC(p: proc.var,  x:INT)BOOL;   [TRUE   =*   p; p ] (x)  ENDP; 

is not equivalent;  in it, the procedure p applied to x is always the first 

argument. 

The merit of any given convention can be debated at length with a defi- 

nite conclusion doubtful.   (Indeed, despite the anomalies of the above 

examples,  in our experience with the  BBN Lisp convention we have found 

it quite satisfactory.)   Suffice it to say that various programmers have 

diverse predilections,  and it may well be that various applications suggest 

'As usual,  we use ELI notation to convey a notion from a different 
language — here, BBN Lisp. 
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different conventions.   In the face of such potential variation,  ELI uses the 

simplest rule available to associate names and values.   We take the position 

that should this prove unsatisfactory,   metaphrase extension is the appropri- 

ate remedy.   In section 8.3,  we discuss one such extension. 

7.1.6   Dynamic Treatment of Modes 

The feature of ELI most at variance with tradition is its dynamic 

treatment of modes.   Languages,  extensible or otherwise,  having data 

types are typically compiler-based and perform most transactions with 

modes at compile-time.   Indeed,  by run-time mode information has usually 

been completely discarded.   Disregarding for the moment those activities 

of the compiler which make a computing machine act as an executor of 

source language statements, there remain two distinct phases in evalu- 

ating a program:   mode-processing at compile-time and statement- 

processing at run-time,  with quite different evaluation rules.   In simple 

languages,  the mode processing is relatively trivial and can often be 

ignored.   However,  in larger languages (such as PL/l) or in extensible 

languages,  the data type declaration rules are complex and verge on 

becoming a (non-executable) language in their own right.   The mode evalu- 

ator becomes correspondingly complex;  e.g.,  consider the treatment of 

mode recursion and forward reference discussed in section 3.15. 

Our concern in the design of ELI was with maintaining simplicity and 

parsimony.   The use of a special and rather complicated evaluator exclu- 

sively for modes held little appeal.   The semantic specification would be 

larger,  communication of the language more difficult,  and implementations 

would be forced to carry more code.   Further,  a special disjoint mode 

language would be an inevitable target for accretions.   That is,  with any 
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sub-language there is an irresistible and often valid pressure to add to it 

features found in the main language, thereby increasing the expense of 

carrying the sub-language.   Hence,  we decided to use a single evaluator 

and force everything into its Procrustean bed.   By and large, the experi- 

ment was successful:   little was amputated, and the stretch was beneficial. 

We have already discussed the undesirable consequences in section 

3.15; here,  we concentrate on the advantages.   By allowing the standard 

evaluator to be used for modes,  we permit the application of powerful 

formation rules to the definition of data types,  notably conditionals,   iter- 

ation,  and procedure recursion.   We illustrate these in turn.   Consider, 

for example 

special, string   «-   [[ max. record ^ k  =*   ROW (max. record , CHAR) ; 

ROW (CHAR) B 

The mode special-string is either a row of max-record CHARs or,   if this 

requires reserving too much storage for each special-string,  it is a length 

unresolved string.   In general,  conditional computation of mode definitions 

allows forms which compute optimal definitions perhaps based on infor- 

mation known only after the time the definitions are written. 

Iteration allows procedures such as 

complete, binary.tree    *- 

PROC (depth: INT ,  m: mode) mode; 

DECL   temp : mode; 

temp   *-   m; 

FOR   i   +-   1,  . . .,  depth DO 

temp   *-   S (left: temp ,   right: temp , value : m) ; 

temp   ENDP; 
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The result of the procedure is a mode:   the complete binary tree of depth 

levels where each node has a "value" cell of mode  m and two sons called 

"left" and "right".   This one procedure defines and describes a family of 

modes and serves as a realization in the language of the intuitive notion 

"complete binary tree". 

The descriptive power alone is sufficient motivation for allowing 

strong formation rules.   For example,  turning to procedure resursion, 

we have 

array   *■ 

PROC (m: mode ,  order : INT) mode ; 

order = 0   =»   m; 

ELSE   ROW (array (m, order -1)); 

ENDP ; 

which delivers the mode:   array of dimension order m's.   For example, 

string   *-   array (CHAR, 1) ; 

bool_ matrix   *-   array (BOOL, 2); 

third., order _ tensor   *-   array (INT, 3) ; 

It is important to note that array describes only one method of represent- 

ing multidimensional objects.   In implementing GPL,  Garwick used a 

different representation [Gar68b] which may be described as 

garwick. array   *- 

PROC (m : mode, order : INT) mode ; 

order = 0   =*   m; 

order - 1   =»   ROW (m) ; 

ELSE  ROW (PTR(garwick_ array (m , order-1))); 

ENDP; 
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Every garwick-array of order > 1 is a row of pointers; hence,  components 

can be shared among two or more garwick-arrays whenever the components 

are compatible.   The point we wish to make is that the use of such pro- 

cedure definitions allows precise,  concise specifications of mode families. 

Sets of mode-valued procedure definitions which call each other 

conditionally and themselves recursively behave effectively as one form 

of high-level mode definitions.   With their use it is easy to define modes 

of considerable complexity,  efficiency,  and power.   Hence,  we recover 

the power apparently lost by restricting basic objects while achieving 

generality and flexibility in the process. 

7.2   COMPARISON WITH OTHER  LANGUAGES 

7.2.1   Bound Variables 

We use the term bound variable as an antonym of free variable.   A 

bound variable is either a formal parameter or a declared variable;  a 

free variable is any variable which is not bound. 

Few aspects of programming languages rouse so much confusion, 

controversy and acrimony as does the handling of formal parameters. 

There are at least four'  sorts of bindings found in contemporary languages: 

(1) by value,  e.g. the Algol 60 call by value, 

(2) by reference,   e.g. the standard method of binding in Fortran IV, 

(3) by name,  e.g. the Algol 60 call by name, 

(4) unevaluated,  e.g. the binding of FEXPRs in BBN Lisp 1.85. 

'An additional,  orthogonal axis can be introduced if we consider different 
ways of spreading the argument list,  i.e.,  of pairing arguments with 
formals.   This at least doubles the number of possibilities.   For sim- 
plicity,  we ignore this issue and assume a 1-1,  left-to-right correspond- 
ence. 
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These are characterized as follows.   Bindings by value and reference both 

evaluate the argument; the former creates a new object and assigns the 

value of the argument to be the initial value of that object;  the latter simply 

establishes an association between the formal name and the value of the 

argument.   Binding by name and unevaluated both involve no evaluation of 

the argument.   They differ in that after binding by name,  a use of the 

formal parameter in the procedure body causes evaluation of the argu- 

ment,  whereas after binding unevaluated a mention of the formal parame- 

ter has as value the unevaluated argument.   That is, the effect of binding 

by name can usually' be achieved with an unevaluated binding if every 

instance of the formal name,  say "x",   in the procedure body is replaced 

by "eval(x)M,  where eval is that language function which maps a form into 

its value. 

Several languages attempt to achieve unification of concepts by sub- 

suming two or more of these binding methods under some other.   We have 

just shown how to subsume (3) under (4).   It is also well known that call by 

name can be achieved by a call by value in which the argument passed is 

a procedure equivalent to the actual parameter which would have been 

passed by name.   Indeed,  this is the technique used for implementing the 

most general cases of call by name in Algol 60.   Further, binding by 

reference can be subsumed under binding by value if there is an operator 

which maps any object into a pointer to that object.   For example,   in 

Euler [Wir66] where the operator is denoted by M@",  the form flf(@b)n 

achieves a call by reference even though the binding mechanism is by 

•The possible exception to this occurs when x appears on the left-hand 
side of an assignment statement and the locative condition (cf. §7.1.4) 
does not hold. 
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value,  for "@b" is a pointer to b,  and this pointer is assigned as initial 

value of the formal parameter. 

Algol 68 uses a variation on this last technique.   As noted in section 

7.1.4,  the practice in Algol 68 is to use a variable of data type ref 9TC 

where other languages would use one of type 9H.   Consider,  for example, 

the form "f(b)M.   If b would have type 9H in Euler,  it will generally have 

type ref 911 in Algol 68.     Hence,  a pointer to the 9H object is already 

available without need to apply the @ operator.'      The binding for the 

Algol 68 "f(b)M may be carried out much like the binding for the Euler 

"f(@b)lf. 

It might be assumed that ELI  would obey the dictates of simplicity 

and allow only one class of binding,  e.g. by value.   However,  closer 

investigation reveals that the appeal to simplicity is deceptive.   Having 

already imposed the locative condition,  binding by reference is trivial to 

define and implement.   Also,   since arguments are initially unevaluated, 

binding unevaluated requires little more than omitting an application of 

eval.   Hence,  ELI provides for value,  reference,  and unevaluated bind- 

ings.   An inspection of bind-formals in section 5.13.4 will demonstrate 

that this adds little to the complexity of the evaluator.   All the required 

mechanism is already present in the evaluator for other reasons so that 

its application here is merely an example of completeness.   As a general 

principle,  it would seem that whenever it is possible to cater to all tastes 

on a significant issue at little cost,  the dictum of parsimony may be over- 

ridden. 

^When the pointer is not needed,  as in producing an effective binding by 
value,  an automatic application of a val operation takes place.   This is 
termed "dereferencing ' and is a common occurrence in Algol 68. 
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The completeness argument is,  however,  a two-edged sword;  it 

demonstrates a deficiency in the handling of declared variables in ELI. 

It should be recalled that declared variables are always initialized to 

mode-dependent default values.   One might well argue for the utility of 

initial values obtained from a formal-actual correspondence analogous to 

that of formal parameters and their arguments.   If the initial value is 

bound by value,  an assignment statement following the set of declarations 

is an acceptable paraphrase.   However,   suppose we wish a binding by 

reference.   For example, 

DECL   x : intp  EQU a[i] ; 

where a is a two-dimensional array of ints.   The intent is to establish 

that x names the same object as does a[i], the value of i being frozen at 

the moment of binding.   This is analogous to a formal parameter x of 

mode intp bound BYREF with argument a[i].   Utility and symmetry both 

argue that such bindings of declared variables be allowed.   As ELI 

currently stands,   however,  there is no EQU option permitted in a decla- 

ration.   It should and will be added to the language in its next edition. 

7.2.2   Free Variables 

In section 3.17.2,  we discussed the dynamic scope rule for free vari- 

ables in ELI while postponing its justification.   Here,  we deal with that 

issue.   There appear to be only two alternatives to dynamic scoping: 

(1) static scoping,  as in Algol 60 or Algol 68, 

(2) global scoping,  as in APL,   i.e. all free variables fall into a 

common,  global pool. 

Clearly,   (2) is a subcase of dynamic scoping provided that no free variable 

names clash with bound variable names.   Since the globals form a single 
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pool,  this requirement can be readily satisfied by a simple scope-invariant 

renaming.   Hence, the issue is dynamic vs. static scoping. 

The following Algol 60 fragment should make the difference clear. 

begin 

real d; 

real procedure f (x);  real x;  f    : =    x + d; 

d    :=    1; 

yl    :=   f(10) 

begin 

real d; 

d    :=    2; 

y2    :=   f(10) 

end; 

end 

Using the dynamic scope rule,  the first call on f identifies d with the d 

of the outer block and sets yl = 10+1,  while the second call on f identi- 

fies d with the d of the inner block and sets y2 = 10 + 2.   Using the static 

scope rule,  the d of the procedure is permanently identified with the d 

whose scope is the block in which the procedure is defined;  hence,  both 

calls add 10 to 1 (the value of the outer d).   Note that Algol 60 uses the 

static rule.   There are,   however,   several telling arguments in favor of 

dynamic scoping. 

The first is based on simplicity.   The dynamic scope rule gives pre- 

cisely the correspondence which would be obtained if the procedure body 

were substituted in place of the procedure application.   This so-called 

"copy rule" is the simplest,  most consistent convention,  for it preserves 

the scope rules of block structure in their sharpest form.   Because there 
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is a uniform scope rule,  the language is easier to learn and communicate. 

The second point is that for most circumstances,  dynamic scoping is 

more useful than static.   It allows procedures written (and even compiled) 

separately to communicate via common names.   More important,  this 

communication remains valid during the execution of the program.   That 

is,  there is a single rule which associates meaning with a free variable  x: 

the meaning of free-x-hood is always the most recent bound incarnation 

of x.   If x is tied to some conceptual notion,  references to "x" always 

obtain the local incarnation of that notion. 

A third argument is based on the baneful effects of static scoping. 

To illustrate the problem,   imagine adding to Algol 60 procedure-valued 

variables (procvars) and allowing assignment of procedures to such 

variables.   Consider the following program (where lines are numbered 

for reference). 

(1) begin real a , d ;   procvar p 1 ; 

(2) d:=10; 

(3) begin real b, d;  procvar p2 ; 

(4) d :=  20; 

(5) p2  :=  procedure (x);   real x;   x := x + d; 

(6) b :- 1; 

(7) P2(b); 

(8) pi   :*  p2 

(9) end; 

(10) a  :=   1; 

(11) p2(a) 

(12) end 
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The assignment on line (5) of a procedure to the procvar p2 is equivalent to 

procedure p2 (x);  real x;   x := x + d; 

The static scope rule of Algol 60 would permanently identify d  in the pro- 

cedure with the d of the inner block.   Hence,  line (7) increases b by 20. 

The difficulty arises in line (8) which assigns the procedure to pi.   This 

allows the procedure to be carried outside the scope of the inner d. 

Line (11)  specifies that a is to be increased by the value of d in the inner 

block.   However, that d,  if implemented on the stack,  has disappeared. 

The problem does not arise in Algol 60 because procedures are not 

assignable values and hence have strictly static scope.   As soon as we 

permit nonstatic scoping of procedures,  the static scope rule for free 

variables encounters difficulties. 

One solution,  adopted by PAL [Evans69],   is to completely abandon 

the stack.   All storage is placed in the heap and storage blocks are re- 

claimed by garbage collection when no longer referenced.   Hence,  in the 

above example, the storage for the inner d exists so long as pi or p2 

exists,  for the procedure which they reference references d.   This sort of 

solution is not too unreasonable for PAL which is used only in an 

instructional capacity and hence for running small,   short programs.   How- 

ever,   its application in a language for general use would be seriously mis- 

placed.   Where a stack can be used,  it is far more efficient than garbage 

collection.   For most problems, this efficiency is far more important 

than the ability to obtain statically scoped free variables.   To obtain the 

latter at the sacrifice of the former would be a poor trade. 

351 



Another solution,'  adopted by Basel [Jorr69],   is to associate the free 

variable with the value of the corresponding bound variable.   For example, 

in the above illustration,  the static scope rule of Algol 60 would associate 

"d" in the procedure with the location of the inner block's d; hence, 

assigning to "d" in the procedure would change the value of the inner 

block's  d.   The static scope rule of Basel,  on the other hand,  would associ- 

ate lfd" in the procedure with the value of the inner block's  d  at the time 

line (5) is reached,  i.e.,  the real number 20.   While this solves the prob- 

lem,  it changes the semantics.   To obtain the sharing pattern of the 

Algol 60 original,   it is necessary to declare the inner block's d to be a 

ref real and separately establish its value as a pointer to a real in the heap. 

Then,   in line (5),  the value of "d" in the procedure becomes the location 

of a real,  this value being fixed.   Since the heap real persists even after 

termination of the inner block,  line (11) causes no trouble.   However,  note 

that this moves the real from the stack to the heap,  with attendant over- 

head.   That is,  the PAL solution is adopted with two changes.    (1)  It  is 

made explicit in the program.   (2)  It is used only where a bound variable 

object is to be shared with a free variable,   so that the heap expense is not 

incurred for every variable.   However,  it is still an uneconomical,   shot- 

gun approach.   Few cases of sharing between bound and free variables are 

coupled with a scope problem which really requires the heap, but all cases 

are forced to employ it. 

^CPL has a similar feature,  but only as an option.   Procedures can be 
either "free" or "fixed".   In the former case,  free variables have 
dynamic scope.   In the latter case,  the value of the free variable is 
frozen at the time of procedure definition. 
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A third solution is adopted by Algol 68.   It defines the scope of a 

procedure' to be the smallest scope of any free variable used within it. 

It then requires that in any assignment having the format 

(procedure„valued variable)   :=   (procedure) 

the scope of the (procedure) must be at least as large as the scope of the 

(procedure-value variable) .   This guarantees that a (procedure) cannot be 

carried outside the scope of its free variables.   The formal definition 

specifies that if a program attempts an assignment which violates this 

requirement, the further evaluation of that program is undefined.   Clearly, 

the desired consequence in the case of such an illegal assignment is an 

error message,   possibly in conjunction with a trap to an error 

recovery routine.   However,  according to the Informal Introduction to 

Algol 68,-E in some cases "a run-time check would probably be necessary, 

and we doubt whether most compilers will bother to put it in" (cf. §4.2.3 

of [Lind69]).   The consequence will be some very unusual program bugs. 

To summarize,  it appears that there is no completely satisfactory 

way to deal with static scoping of free variables while allowing procedures 

to have nonstatic scope.   Further,  dynamic scoping is simpler and in 

most cases more convenient for the programmer.   Hence,  we have chosen 

to use the dynamic scope rule in ELI. 

'As usual,  we have altered notation to avoid confusion.   Algol 68 calls 
procedures "routines",  and uses "procedure" meaning procedure-valued 
variable. 

+This is an informal description of Algol 68,  prepared by C. H. Lindsey 
and S. V. van der Meuler at the request of the Algol 68 working group 
(IFIP WG 2.1). 
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7.2.3   Accessing the Values of Variables 

In the specification of ELI given in section 5,   the value of a 

variable is always obtained by accessing the datum component of the 

symbol-table-element for that variable name.    The binding and un- 

binding of variables at procedure entry and exit arranges that the 

datum component always yields the current incarnation of the variable 

name.    There are,   of course,   a number of other techniques for imple- 

menting name scoping.    In this sub-section,  we will discuss one such 

alternative technique which presents itself as a particularly strong 

rival and examine the trade-offs between it and the one we have chosen. 

It will be useful to first discuss in detail the method used in ELI. 

This uses three structures —the value-stack,   the name-pdl,   and the 

set of symbol-table-elements —which are employed as follows.   (1) The 

value-stack is a lifo  stack holding the actual values of all local 

variables.    (2)    The name-pdl is a stack of name-pdl-elements,   one 

for each local variable,  where 

name_pdl_element <£=    S(name : symbol,   old.index : int,   datum : ptr_any) 

The datum component points to the actual value which resides in the 

value-stack.    The old-index is the index of the name-pdl-element for 

the previous variable having the same name as this entry.    The name- 

pdl is always kept current; hence,   scanning the stack from top to 

bottom (i. e.   most recent entry to oldest entry) the first entry encountered 

having a given variable name always corresponds to the current incar- 

nation of that variable.    (3) for each variable name,   there is a symbol - 

table-element defined 
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symbol.table-element  *- S(print.name : PTR(string), 

datum : ptr.any, 

pdl.position : int) 

Let N be some variable name and let S^ be the symbol-table-element 

for N.     The current incarnation of the variable named N is always 

pointed to by SN . datum while S^ . pdl.position is the index of the cor- 

responding element on the name-pdl.     This is the same element that 

would be obtained by scanning the name-pdl from top to bottom looking 

for the name N.    Hence,  the current incarnation of N can be found 

either via SN or by scanning the name-pdl.     The evaluator for symbols 

used in section 5 — ev-symbol — uses the former. 

Keeping SN . datum current requires that whenever a variable named 

N is created, an entry E must be made on the name-pdl and the following 

actions taken 

E . name   *- N ; 

E . datum  «-   (location of actual value on the value-stack) ; 

E. old-index  «- SN . pdl-position ; 

SN . pdl-position  *-   (index of E ) ; 

S^ . datum   «-  E . datum ; 

On destroying the variable at procedure exit,   it is necessary to reverse 

these actions 

SN . datum   «- name_pdl[E . old-index] .datum ; 

S^ . pdl.position  «-  E . old.index; 
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Name scoping is implemented by a somewhat different technique 

in BBN Lisp 1.85 [Bobr68].    There,   the symbol table entry is not 

used for the current value and the elements of the name-pdl     have 

the form 

name.pdl.element *" Sjname : symbol,  datum : ptr_any) 

The current value is obtained by searching the stack of these elements 

for the first occurrence of the desired name. 

The advantage of the stack-only technique is its simplicity.    It 

does not require setting up back pointers in the name-pdl,   changing 

the symbol-table-elements,   or unwinding the backpointers.    Also,   the 

absence of backpointers and slots to hold them result in less storage 

required by the name-pdl.    Most important,   however,   is that it pre- 

serves earlier environments correctly.    In any environment,   it is 

possible to return to an enclosing environment by merely moving back 

the stack pointer for the name-pdl.    Hence,   it is possible to easily 

implement such language features as (1) a procedure return through 

several intervening procedure calls,   and (2) an evaluator which while 

leaving control in the current environment evaluates a given form in 

an earlier environment.    More generally,   maintaining the environment 

as a simple stack proves to be a clean,   well-chosen representation; 

it makes possible the saving of environments,   the transfer between 

environments,   and the manipulation of environments as data objects 

with very little overhead. 

In BBN Lisp,   the structure is called the "pdl"; we use our terminol- 
ogy to obtain uniform notation. 
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The disadvantage of the stack- only technique is that each access to 

a variable in interpreted     code requires searching the name-pdl.    If 

a variable is used with any frequency,   this may become expensive. 

The search loop requires about 4 instructions, depending on machine. 

The most favorable assumption about variable usage is that all varia- 

bles are local.    Assuming that each procedure has around 5 locals 

this would imply that on the average 2 or 3 elements must be searched 

for the right one to be found.    Hence,   we can expect that individual 

accesses to a variable will take at least an order of magnitude longer 

than with the technique used by ELI.    If the variable is used repeatedly, 

say in an iterative loop,   this expense is particularly distasteful. 

A second point should be noted.    While most variables used in 

procedures are indeed local and their entries lie reasonably close to 

the top of the name-pdl,   procedure names are an important exception: 

they are usually used free.    Typically,   a procedure name is bound at 

the outermost level (cf.  §9. 3 for a further discussion of this point). 

Because the name-pdl can grow large due to nested (particularly re- 

cursive) calls,   considerable searching would be required to find their 

entries.    Since procedure access is a frequent occurrence,   the cost 

Compiled code  "knows" the position on the name-pdl  of all local 
variables.    The locations of free variables can be determined by a 
search of the name-pdl on procedure entry and stored in name-pdl 
elements which are treated specially.    The position of these special 
elements are also "known" to compiled code.    Hence,   once the locations 
of free variables have been picked up,   a free variable can be accessed 
at about the same price as a local. 

* In Lisp terms,   this corresponds to the number of 7\-variables plus 
top-level prog-variables. 
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of such searching would be unacceptable.    In section 7.1.5,   we have 

discussed the means by which BBN Lisp escapes from this bind: 

procedure values are treated as a special case.    A procedure value 

for a name N is stored in a special function-cell in the symbol  table 

entry for N and this cell is accessed when a procedure value is needed 

(i.e.  for procedure application).    Hence,  procedure values in BBN 

Lisp are accessed in the same way as are all values in ELI.    There 

is,   however,   one difference.    The function-cell in Lisp 1.85 is strictly 

global; it is not updated for local variables.     The function-cell is always 

considered first when evaluating a name appearing as the operator in a 

procedure application; hence,   a global value of some given name will 

sometimes override a local procedure value of that name.    Although 

Bobrow [Bobr69]    contends that this is precisely the appropriate scope 

rule for procedure names,   we argue that it is more accurately seen 

as a language anomaly. 

To summarize,   the stack-only technique used by BBN Lisp has 

two difficulties.    (1) Procedure values are either handled on the stack, 

in which case access is unacceptably slow,   or they are handled specially, 

in which case their scope rules are non-standard.    Neither,   we contend, 

is acceptable.    (2) Other values,   while not so deeply burried,   still 

require an order of magnitude more time to access than with the ELI 

technique.    On the other hand,   the ELI technique requires more set-up 

time when a variable is created or destroyed,   requires more storage 

for the name-pdl,   and makes manipulation of the environment more 

difficult. 
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The last difficulty is partly mitigated by the observation that the ELI 

technique does keep a valid stack.    Hence,   environments can be saved 

by copying the stack (or by switching the stack pointer which addresses 

it) and restored by reinstating the stack and then using it to reconstruct 

the values in the symbol table entries.    Further,   since the bindings of 

variables can be found by searching the stack,   it is possible to tempo- 

rarily use an enclosing environment by moving the name-pdl pointer 

and setting a switch so that ev-symbol does a search rather than using 

the datum cell.    Provided that this is not done frequently,   and infrequent 

use seems likely,  this will be a satisfactory solution. 

We chose the technique employed in section 5 for two principal 

reasons.    (1) The special scope rule for procedure names seems very 

undesirable.    (2) The expense of access to variables by stack search 

would be particularly painful since initially no compiler will be available. 

It should be stressed,  however,   that this is an implementation issue 

to which the language is,   or should be,   insensitive.    Hence,   an imple- 

mentation is free to replace the modules which handle name scoping 

with any others which produce the same results.    When a running imple- 

mentation is available,  we intend to perform measurements on system 

behavior which will provide data to replace our guesses on such quan- 

tities as relative frequency and scope of procedure names,   and average 

depth of stack searching which would be required in a stack-only scheme. 

Based on such data,  we intend to reconsider the issue in a more enlightened 

fashion. 
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7.3   THE   FORMAL  DEFINITION 

There  are  a number of criteria which might be applied in assessing 

the worth of a formal semantic specification and comparing it to others. 

The principal ones are: 

(1) generality and power of the metalanguage employed, 

(2) precision and range of the formal specification, 

(3) directness and clarity of the specification, 

(4) utility of the specification, 

(5) independence of the specification from machine and implementation. 

These are not all of equal importance.   We will consider them in turn,  first 

examining the criterion itself and then applying it in assessing the semantic 

specification of ELI. 

In discussing the power and generality of the metalanguage,  there are 

two different questions one might ask.   (1) How large a semantic space does 

it span?   (2) How large a space does it span effectively?   The first turns 

out to be a pseudoquestion:   almost every metalanguage is universal and 

will describe any programming language feature whatever.   The issue of 

effective spanning is,  however,  a real one.   It is necessary that the meta- 

language effectively cover the programming language,  but also that it 

cover equally well a large peripheral region in which metaphrase exten- 

sions can flourish.   In this regard,  ELI as a metalanguage is clearly 

superior to austere formalisms such as the \-calculus used by Landin, 

the variant of Markov algorithms employed by van Wijngaarden,   or even 

the state vector model of McCarthy (cf. §2.1).   It is roughly comparable to 

ULD (cf.§2.1.4) in the sorts of structures and operations it permits.    How- 

ever,   ELI permits one very useful information structure prohibited in ULD: 

shared components.    It will be recalled that ULD structures are restricted to 
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trees;  re-entrant graphs are forbidden.   Hence sharing,  e.g. of an object 

among two or more names,  must be indirectly modeled in ULD whereas 

there is a direct representation in ELI by means of a pointer.    In this 

respect,  ELI is a significantly better metalanguage. 

The precision of the formal specification turns out to be far less 

important an issue than it might first appear.   All the formalisms that 

have been proposed for semantic modeling — from the \-calculus to ULD — 

are mechanical.   As such,  they all yield a definite result for each program 

(possibly a set of results,  in the case of ULD) with none of the ambiguities 

and vagueness which result from a natural language description.   There is 

little reason to claim one model superior to another because it is more 

precise or is based on a "better" axiomatized metalanguage. 

Semantic specifications do, however,  differ in their range,  i.e.,  how 

far they go in describing the language.   Two dimensions are relevant: 

(1) depth — that is,  how far the reduction toward elementary oper- 

ations proceeds;  e.g.,  is the addition of integers formally defined? 

(2) breadth — that is,  how much of the environment in which the 

language runs is described in the specification;  e.g.,  is the file 

system included?   the garbage collector? 

Some authors such as J. DeBakker [DeBak67] believe an extensive range to 

be a significant criterion.   Were this indeed the case,  then the specifi- 

cation of ELI given in section 5 would necessarily be judged somewhat 

deficient.   It leaves as primitives,  unspecified by formal definition, the 

basic arithmetic operators,  some mode creation operators,  and several 

others;   similarly,   it does not treat a number of system features such as 

garbage collection and input /output. 
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However,  it is our contention that once a certain domain has been 

covered,  an extensive range is relatively unimportant.   For example,  in 

the case of ELI,   it would not have been difficult to continue the formal 

definition in both dimensions.   The mode INT could be defined as 

ROW(k, BOOL)  and arithmetic operations defined by procedures carrying 

out binary arithmetic modulo k.   However,   it is unclear what purpose such 

an exercise would serve.   The arithmetic operations over the integers are 

well defined; there is no question of ambiguity or uncertainty as to the 

result.   Similarly,   input/output devices and input/output primitives could 

be constructed in the language instead of being left primitive.   Again,  it 

is not at all clear that such a continuation would be either useful or inter- 

esting in the context of this study.   In general, there are many ways of 

defining the semantics of some component of a language;  formal specifi- 

cation is only one of many.   In the language proper,  a formal definition 

serves well,  for it gives precision in the region where the traffic and inter- 

action of components are most heavy.   At the peripheries,  operations are 

isolated and less complex;  the same degree of precision is unnecessary. 

In short,  while a formal semantic specification is most appropriate in 

describing the kernel language,  attempts to apply it outside this province 

may be misplaced. 

One criterion we do believe to be valid is the directness and clarity of 

the specification.   Obviously, this is a prerequisite if the specification is 

to be read and used.   Less obvious perhaps is its importance in obtaining 

a correct specification.   Formal specifications,  like programs,  must be 

debugged.   The definition of any nontrivial language,   in any metalanguage, 

will be sufficiently complex that it may be expected to contain errors. 

Some will be mere misprints,  but one or more oversights should not be 
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surprising.   The syntax of Algol 60 was a far simpler matter,  examined by 

the several members of the defining committee, yet it contained a serious 

ambiguity.   Oversights of similar importance should be expected in a 

semantic specification,   initially.   If a semantic specification can be circu- 

lated,  read,  studied,  and understood by a community other than its authors, 

the work can be effectively refereed and errors discovered.   Failing such 

exposure, the correctness of the work may remain in doubt. 

In attempting to apply the criterion of directness and clarity,  it must 

be confessed that this is partly a matter of taste.   Issues such as style 

enter in to some extent.   However, the limiting and most important factors 

tend to be the model employed.   We noted in section 2.1 the advantage of a 

one-stage,  interpreter-based formal model in giving a direct specification 

of languages,   specifically of establishing a one-to-one correspondence 

between structure and meaning.   Also,  we have noted the utility of making 

a semantic specification intuitively acceptable by using an effective,   straight- 

forward representation.   Examining the specification given in section 5,  it 

appears that these guidelines have served well.   Considering the power of 

the language,  its definition is surprisingly small,  clean,  and perspicuous. 

Another valid criterion is the utility of the formal definition.   One may 

well ask for what purposes the definition was intended and how well these 

purposes are served.   Three classes of uses seem most important: 

(1) communication — to users,   students,  standards committees,  and 

the like, 

(2) as a design tool, 

(3) as an implementation guide. 

To these three,  some schools might add a fourth: 

(4) as a basis for proofs about the language. 

363 



Before discussing these,   it should first be pointed out that many formal 

specifications of programming languages are intended for no use whatever. 

Two of the larger efforts — DeBakker's model of Algol 60 and the ULD 

model of PL/l — appear to be exercises in formal definition unalloyed with 

any thought of use.   The ULD project,  for example,  was started too late to 

be  employed in the design of PL/l,   in assessing proposed changes to the 

language,     or as a guide to the IBM System/360  implementation.   There 

was once some toying with the idea of using the ULD specification as a 

"language control document",  to authoritatively define the language 

[Nich68] ; however,  nothing has come of this.   In short,  a useful formal 

specification is the exception rather than the rule.   This,  more than any 

other single observation,  indicates the immature state of the field. 

The formal specification of ELI is intended to serve the first three 

uses cited above:   communication,  design,  and implementation.   We recog- 

nize the potential importance of the fourth but find it outside the range of 

the present study.   At this state in the development of the field,   it would 

appear that the construction of formal proofs is less important than the 

ability to carry out clear,  coherent discourse at the descriptive level. 

The utility of the ELI formal definition in communication can only be 

judged by others;  we leave this assessment to the reader.   We can,  how- 

ever,   comment on its application in design.   There it proved invaluable. 

We used the formal specification as our working notation:   instead of 

drawing diagrams with tangles of pointers in the usual fashion of system 

programming,  we wrote abstract syntax and ELI interpreter code.   Since 

ELI was designed partly with this use in mind,   it should hardly be sur- 

prising that it proved to be a facile and convenient notation.   However, this 

does support the extensible language thesis:   the right language is the one 
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tailored to the task.   In particular, the availability of the data type defi- 

nition facility for constructing the abstract syntax of programs and the 

structures used by the evaluators was of singular importance. 

As ELI has not yet been implemented, the acid test of the formal 

specification is still to come.   We wrote the specification with the intention 

that it be used as a blueprint for implementation.   Further,   in designing 

the language,  we made many design decisions based on the model; for 

example,  judging the efficiency of a construct from its treatment in the 

model.   This raises certain questions which bear examination.   If such 

judgments are to produce an efficient language,  it is necessary that the 

semantic specification be as realistic as possible,  i.e., that it serve as a 

plausible model for pragmatics as well as a reliable model of semantics. 

While the model need not display every detail of the actual processor,  we 

want some assurance that simple actions in the model can be carried out 

efficiently in practice.   This imposes two requirements.   One has already 

been noted in our discussion of clarity of specification:   primitives of the 

model must be appropriate to reasonable contemporary hardware wherever 

possible.   This simultaneously insures that the model is  intuitively accept- 

able and pragmatically valid at the base level.   The second requirement is 

that the structures used in the specification be homologous to those which 

are intended for use in the implementation.   Note that while the first 

requirement is not difficult to accept, the second may present problems: 

wherever the implementation is to use an efficient but complex structure 

instead of a simpler,  less efficient one,  there will be question as to 

whether or not the model should use the simpler one instead.   While the 

temptation may be present,  it is our contention that such an attempt at 

simplification would be misspent.   As it creates a purely artificial 
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processor,  it will make comprehension of the language and its specification 

more difficult,  for valid choices made for good reasons appear mere 

whimsey when projected onto an artificial model irrelevant to the actual 

design. 

In one sense,  ELI's use of semantic specification as an implementation 

blueprint is a rejection of the notion of implementation independence,  at 

least in its strongest interpretation.   Unlike ULD,  which attempts to de- 

scribe PL/I in a fashion independent of any possible implementation,  our 

formal specification yields a preferred implementation for ELI.   While any 

other implementation which produces the same results is equally valid, 

there is a strong predisposition toward the implied implementation.   Note 

that the issue here is quite distinct from machine independence.     Most 

models proposed for semantic specification,   including our own,  do not 

depend on a specific computing machine,  IMP being the only notable ex- 

ception.   By implementation and dependence thereon,  we refer to the 

structures and tables employed, the processor modules and their relation, 

and such like — a level of organization above the actual machine.   There 

are those who argue that implementation independence is a highly desirable 

goal,  for the semantic specification is then "pure" and therefore in some 

sense "better".   Taken strictly as a validity rule,   implementation inde- 

pendence is an unassailable principle:   all processors which produce the 

results specified by the formal definition are surely equally valid.   How- 

ever,  we contend that it would be folly to take this as a normative rule and 

choose a specification which is unimplementable and hence implementation- 

independent.   Quite the contrary,  as pointed out above,  there are good 

reasons to design a language with a specific implementation in mind and 

embody this as a paradigm in the formal specification. 
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Section 8.   EXTENSIONS 

The first thing one does with an extensible language is extend it.   In 

this section,  we specify a number of extensions serving a variety of 

functions.   Some are designed to mimic features which have proved useful 

in other languages.   Were a handbook of language features ever compiled, 

it would serve as a source of scenarios;  in the absence of such a 

compendium,   we shall raid user's manuals.   A second set of extensions is 

concerned with establishing a facility with which higher-level mode defi- 

nitions can be constructed. 

Concerning the specification of these extensions,   it should be recalled 

that ELI is at present only a base language and does not contain a complete 

extension mechanism.   Consequently,  the extensions will be presented 

partly as modifications to the specification of section 5 and only partly as 

executable statements in the language. 

8.1   LISTS,  PROPERTY  LISTS,   AND LIST  PROCESSING 

A survey of the literature discloses that the sine qua non of an exten- 

sible language proposal is a demonstration of the ability to perform list 

processing,  preferably in the spirit of,  and using the notation of Lisp.   To 

mimic Lisp 1.0 [McCar60], the necessary mode definitions are straight- 

forward: 

DECL   dotted, pair, list : mode; 

dotted .pair   *■   allocate (ddb , ( )); 

list   <=   PTR (dotted, pair ,   symbol .table, element) ; 

dotted .pair   <=   S (car: list,  cdr:list); 
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Similarly,  the primitive operations are readily defined.   For example, 

cons   — 

PROC (x: list, y : list) list; 

DECL   temp: list; 

temp   —   allocate (dotted, pair ,  (    )); 

temp.car   *■   x;   temp.cdr   «-   y; 

temp ENDP ; 

car   «- 

PROC (x : list) list;    x.car    ENDP ; 

atom   «- 

PROC (x: list) list; 

mval(x)  ■  symbol „table „element   =*   t; 

ELSE   f; 

ENDP; 

where "tM and "f" are identifiers of mode list whose values are pointers 

to distinguished symbol table elements.   The other primitive operations 

cdr  and  ec[ — are defined analogously.   From these,  the various list 

manipulation functions may be obtained by transcribing the Lisp defi- 

nitions into ELI.   For example, 

subst   +- 

PROC (x: list,  y:list,  z : list) list; 

NT   This substitutes the list x for the atom y in the list z ; 

atom(z)   -»   |[eq(z,y)   ->   x;  ELSE  z ]; 

ELSE   cons (subst (x, y , car(z)) ,   subst (x, y , cdr(z))) ; 

ENDP ; 
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If,  as will surely be the case,  one is interested in the list processing 

of Lisp 1.5 rather than Lisp 1.0, two sets of additions must be made.   The 

first is simple:   to allow previously created list structure to be changed. 

We define 

rplaca   *■ 

PROC (x: list,  y: list) list; 

mval(x) ± dotted.pair  =»   error ("rplaca „fault"); 

x.car   «-   y; 

x   ENDP; 

The function rplacd is similar. The second addition is to allow atoms to be 

integers as well as symbol table elements. We replace the above definition 

for list by 

list   <=   PTR (dotted .pair,  symbol, table, element, INT); 

and modify the definition of atom.   This, however,  is incomplete for while 

it allows a list to be a PTR(INT),   it does not allow a list to be an INT. 

Hence,  forms such as 

cons(x,   3 + 5) 

are not legal,  for the second argument to cons is an INT.   The remedy is 

simple:   the primitive operations are changed to take generic arguments, 

i.e.,  list or INT.   When necessary,  the INT is converted to a PTR(INT). 

We define the mode 

int. or. list   «=   RANYÜNT,  list); 

and the conversion function 
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int .to .list   — 

PROC(x:INT) list; 

DECL   temp: list; 

temp   -   allocate (INT , <    ) ) ; 

val(temp)   *•   x; 

temp   ENDP; 

Then the definition of cons becomes 

PROC (x: int _ or . list,  y : int . or . list) list; 

DECL   temp: list; 

temp   *-   allocate (dotted, pair , (   )); 

temp.car   *-   [typ(x)   = INT   -»   int.to. list (x) ;   ELSE  x ]] 

temp.cdr   «-    [typ(y)   = INT   -»   int. to. list (y);   ELSE y ]| 

temp   ENDP; 

This and analogous changes to eq, rplaca and rplacd are the only modifi- 

cations necessary, for all the other functions are defined in terms of the 

primitives. 

It should be clear,  however,  that procedures which are given or 

deliver objects of the wrong mode will be a common problem in an exten- 

sible language due to the large number of defined modes.   The more 

syncretistic the definition set,  the greater the problem.   In section 8.4, 

we discuss a general solution. 

One feature of Lisp which makes it an attractive programming 

language is the property list which allows each symbol to have arbitrary 

information associated with it under programmer control.   This serves as 

a convenient means of storing data to be retrieved using that symbol as a 

key,  e.g. relations,  dictionaries,  alternative procedure definitions,  and 
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other attributes.   Given the data type list and list processing operations, 

addition of a property list to ELI is simple.   It is necessary only to rede- 

fine the mode symbol-table-element to include a component which holds the 

property list (i.e.,  "proplist"). 

symbol. table _ element   «=   S (print _ name : PTR (string) , 

datum: ptr.any, 

pdl_ position: int, 

proplist: list) ; 

The functions for searching,  adding,  and removing properties from a prop- 

list are as in Lisp 1.5. 

Another exercise is provided by the use of three-link cells: 

triple   *-   allocate (ddb , (    ) ); 

list 3   4=   PTR (triple,   symbol, table, element,  INT) 

triple   4=   S(car:list3,  cdr : list3 ,  csr:list3); 

Doubly linked lists may be formed by chains of triples in which the cdr 

cell points to the next triple and the csr cell points to the previous triple. 

That is,  if x is a list3 pointing to such a chain, 

x.cdr.csr = x 

x.csr.cdr = x 

except where the cdr or csr is NIL.   Such a chain may be readily traversed 

in either direction.   For example,  consider 
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nth   ^ 

PROC (x: lists BYVALUE ,  n: INT ) list3 ; 

DECL   s: symbol; 

[n>0   =*   s-"cdr";  n<0   ->   B <-"car" ] 

FOR   i *- 1 , . . . ,  abs(n)  WHILE  x * NIL  DO x «- x[s] ; 

x   ENDP; 

This yields the list obtained by moving |n|   positions — forward if n is 

greater than 0 or backward if n is less than 0. 

Other uses for three-link cells include doubly-linked rings and binary 

trees with contents cells. Further, by adding a component to hold a BOOL 

flag,  we can obtain the threaded lists of Perlis and Thornton [Perlis60] . 

8.2   SEQUENCING  CONSTRUCTIONS 

One weakness in the surface structure of ELI is its paucity of control 

structures.   Without going into the deeper issues of control,  we observe 

that there are a number of possible special-purpose forms for expressing 

conditional evaluation,   selection of evaluated forms,  and similar sequenc- 

ing rules.   One obvious candidate is a two-armed conditional form,  with 

concrete syntax 

form   —   IF   form   THEN   form   ELSE   form 

This is distinct from another obvious addition,  the one-armed conditional 

with concrete syntax 

form   —   IFF   form   THEN   form 

By using two distinct constructs,  we make parsing easier for the analyzer 

as well as the human reader.   Both forms may be mapped directly into the 

abstract syntax type compound-form,   so that neither special evaluator nor 

additional abstract syntax is required. 
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A more interesting example is the case construction of Wirth and 

Hoare [Wir66b].   This permits the selection and evaluation of one form 

from a set of forms,  the selection being made in accordance with the values 

of an integer switch expression.   For example,  consider 

CASE f(x) IN 

a   *■   delete(b,c); 

dp(x)   ->   s,   ELSE  s-t&w]; 

g(b[j] - c); 

ENDC 

This evaluates f(x) and then executes either the first,  second,  or third form 

between IN and ENDC ,  depending on whether the value of f(x) is 1,   2,  or  3. 

(If f(x) is not an INT or does not fall between 1 and 3,  then the last form is 

taken by default.)   The value of the case form is the value of the selected 

form. 

The precise definition is as follows: 

(1) concrete syntax 

form   -   CASE form IN {form;}0   ENDC 

(2) abstract syntax 

case   «=   S(switch: form,  body:formp); 

(3) evaluator 

evcase   *- 

PROC(c:case) ptr.any; 

DECL   i:int; 

DECL   p : ptr.any; 
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DECL   last: int; 

last   *-   length(c.body); 

p   *-   eval (c.switch); 

mval(p) # INT   -»   eval (c.body [last]); 

i   «-   val(p); 

(1 ^ i)  A   (i ^ n)   =*   eval (c.body [i]); 

ELSE   eval (c.body [last]); 

ENDP; 

The choice to evaluate the last form in the case when the switch is 

not an INT between 1 and n is purely a matter of taste.   Our belief is that 

this will prove most convenient.   However,   plausible arguments can be 

made for ruling this an error,  or providing an explicit default form,  e.g., 

form   -   CASE  form IN {form;}0  DEFAULT  form 

with abstract syntax 

case   <=   S (switch : form ,  body : formp ;  default: form) ; 

and appropriately modified evaluator. 

8.3   SEPARATE  FUNCTION CELL 

As discussed in section 7.1.5,  it may be convenient to allow a pro- 

cedure to be associated with an identifier quite independently of any other 

values which that identifier denotes.   Thus,  for example,  "transform" 

could name a procedure simultaneously with its use as a formal parameter, 

say of mode INT.   Context determines which of the two values is intended: 

the procedure is implied only where the symbol "transform" appears as a 

binary operator or as a procedure name in a procedure-application;   the 

other value is implied in all other circumstances. 
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A definition set to allow this,  using the scope rules of BBN Lisp as 

discussed in section 7.1.5,  is as follows. 

(1) The abstract syntax for symbol-table-element is redefined: 

symbol.table.element   4=   S(print.name : PTR(string), 

datum: ptr . any , 

pdl. position : int, 

proplist :  list, 

fn.cell : proc.var); 

(2) To set the function cell,  we need a special procedure 

putd   *- 

PROC (x: form UNEVALED , y: proc.var) proc.var; 

mval(x) * symbol   =»   error ("type, error") ; 

val(val(x)) . fn.cell   *-   y; 

ENDP 

The procedure,  getd,  for explicitly accessing the function cell is analogous. 

(3) The evaluator,  ev-proc,  is defined as follows: 

ev.proc   «- 

PROC (p: proc. form) ptr. any; 

DECL   s: symbol; 

NT   If p is neither a symbol nor a pointer to a symbol,  then 

ordinary evaluation takes place ; 

(typ(p) * symbol) A (mval(p) * symbol)   =»   eval(p); 

s   -   |[type(p)   = symbol   -►   p;  val(p)J; 

NT     Try fn.cell; 

s . fn.cell =£ NIL  =>   s. fn.cell; 
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NT    If fn_cell empty,  use ordinary evaluator for symbols ; 

eval. symbol (s); 

ENDP; 

where 

proc.form   4=   RANY (symbol, form); 

(4) In the evaluator, the code must be changed to call ev-proc when a pro- 

cedure is to be evaluated. This occurs twice in ev-binary-op and once 

in apply.   For example, the corrected apply reads 

apply   - 

PROC (f : procedure _ application) ptr m any ; 

apply2 (check, proc © ev. proc (f.operator) ,  f.arguments) ; 

ENDP; 

8.4   PROGRAMMER-DE FINED  SELECTION,  ASSIGNMENT, 

AND  CONVERSION  FUNCTIONS 

In section 7.1.1,  we noted that while the sorts of basic objects allowed 

in ELI are somewhat restricted,  a far wider domain can be obtained 

through higher-level data type definitions.   Here,  we present a set of 

metaphrase extensions which make possible such definitions.   We will 

refer to the extension set as the extended mode definition facility. 

The technique is motivated by the observation that a data type defi- 

nition is,   or rather should be,   a description of its behavioral laws.   That 

is,  a data type is completely described by specifying what sorts of data its 

instances can contain and how those data are stored into and retrieved 

from an instance.   At this level of discourse,   storage formats and the like 

are merely implementations of the axiomatic behavioral laws. 
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Using the basic objects as building blocks,  higher-level data types can 

be obtained by defining functions which describe the desired behaviors. 

For example,  a list may be represented by linking together dotted-pairs; 

however,   it is frequently useful to treat a list x as if it were a single 

object and, for example,  denote its i     element by nx[i]".   The meaning of 

this construct is specified by a programmer-defined selection function 

associated with the mode list.   Typically, the desired definition will be' 

PROC (a: list BYVALUE , n: INT) list ; 

FOR j-1,.,,, n-IDOa- cdr (a); 

car (a)   ENDP ; 

In general,  an extended mode definition is obtained by taking an ordinary 

mode and associating with it three programmer-defined functions: 

select-fn,  assign-fn,  and convert-fn.   The first two correspond directly 

to the system-defined selection and assignment functions.   The third per- 

forms conversion from the defined mode to other modes as required. 

The use and relation of these three may be best presented by means of 

an extended example. 

Suppose we wish to define a class of lifos which hold only integers 

and which can be used in ordinary arithmetic statements.   For example, 

if x is such a lifo, 

x  —   3 * i 

pushes the value of 3i onto x,  and 

x + 2 * j 

'Note that this definition has the property that subscripted lists may appear 
to the left of the assignment operator, e.g., nx[i] *■ y" has the desired result. 

377 



pops the top value from x and adds it to 2j.   Further,  it is convenient to 

allow access,  without removal,  to elements of x other than the top,  e.g., 

k + x[j] 

adds to  k the j     element of x,  provided that x holds at least j  elements. 

The definition for the base mode is 

int. lifo   <=   S (index: int,  body : intp) 

so that x could be declared an int-lifo by 

DECL   x:int_lifo SIZE <n); 

The desired extended mode is constructed by augmenting the base 

mode int-lifo with three programmer-defined functions.   We first consider 

a select-fn.   By a mechanism to be discussed later, this select-fn will be 

called to evaluate all selections on which the object being selected is an 

int-lifo,  e.g.,  "x[i+3]n 

PROC (x : int _ lifo BYREF ,   i : int) int; 

(1 <£ i) A (i< x@ index)   =»   x@body[i]; 

ELSE   error ("select, int_ lifo"); 

ENDP ; 

This checks that  i is between 1 and the index and,   if so,   performs the 

appropriate subscripting of the body which is an intp;  otherwise,  error is 

called.   The notation " @ " requires some explanation.  It will be recalled 

(cf. §5.10) that a selection is written either in the format 

form2 . identifier 

or 

form2 [form] 

where the former is syntactic sugar for 
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form2 ["identifier" ] 

In line 2 of the function,   it is necessary to refer to the index component of 

the int-lifo x.   Normally,  one would denote this by "x.index".   However, 

the above programmer-defined select-fn is to be applied to evaluate all 

selections whose left part is an int-lifo.   Hence, using "x.index" in the 

above function would invoke an erroneous recursive call on the function 

itself.   What we want is to take the index component of x as defined by the 

base mode definition for int-lifo.   That is, the higher-level select-fn must 

refer to the primitive representation used in the base mode.   The symbol 

"@" is introduced to specify that the primitive representation is called for. 

There are two selection formats specifying primitive representation 

form2 @ identifier 

and 

form2 @ [form] 

where,  again, the former is syntactic sugar for 

form2 @ ["identifier"] 

The rule for evaluating an arbitrary selection can now be stated. 

(1) The object to be selected is evaluated.   Let its mode be 311. 

(2) If fdl has a programmer-defined select-fn and if primitive represen- 

tation is not called for in the selection, then the programmer-defined 

select-fn is applied to the object and its field. 

(3) Otherwise, the basic selection function for the mode 9K,  found in 

9H . s_fn (cf. §5.9.4),  is applied. 

No restriction is placed on the sort of field which a programmer select-fn 

may take as its second argument. In the above example, the second argu- 

ment,  i,  was an int because it is convenient to perform selection on 
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int-lifos using an int field.   For other modes,  various other selection fields 

may prove more convenient,  e.g., 

u[(i + j,   i-j,   k)] (here the field is an intp of length 3) 

v [' a ] (here the field is a CHAR) 

w.ordinary (here the field is a symbol) 

z [( complex: x, y) ] (here the field is a complex number) 

The changes to language specifications needed to make this work are 

as follows. 

(1)    The mode ddb (cf. §5.9.4) is redefined to contain slots'  for holding a 

programmer-defined select-fn,  an assign-fn,  and a convert-fn.   (The 

latter two will be needed later.) 

ddb   <=   S(d : type .descriptor , 

class : symbol, 

type _ resolved : bool, 

dope _ length: int; 

a.fn: proc _ var , 

s.fn: proc.var , 

canonical, name : symbol, 

select. fn: proc _ var , 

assign.fn: proc.var , 

convert. fn: proc . var ) ; 

'Since these three slots will not always be occupied,   it might prove useful 
to use a property list instead of reserving slots.   However,  note that this 
will effect a saving only when the average number of programmer-defined 
functions per mode is considerably less than 1. 
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(2) The concrete syntax for selection (cf. §5.10.1) is redefined 

selection   —   form2 field 

field   —   .  identifier | [  form ]| @  identifier! @  [ form ] 

(3) The abstract syntax is correspondingly augmented 

selection   «=   S (object: form ,  field : form ,  primitive.flag : bool); 

On converting from parse tree to abstract form,  the primitive-flag is 

set TRUE if the concrete field has the format "@  identifier"   or 

"@  [ form ] ". 

(4) The evaluator of selections,  ev-selection,  is redefined so that it applies 

the programmer-defined select-fn when appropriate.   The new defi- 

nition is 

ev. selection  *- 

PROC(s : selection) ptr.any; 

DECL x,  result: ptr.any ; 

DECL  saved.flag: bool; 

DECL m: mode; 

x   *■   eval(s.object); 

m   *-   mval(x); 

(m. select.fn * NIL) A (s . primitive.flag = FALSE)   -> 

apply2 (val(m . select, fn), (formp : s. object,   s.field), x); 

x   —   dereference (x); 

[pure, value (x)   -*   BEGIN x-save(x);   saved, flag «- TRUE  END ] ; 

result   *-   select2(x,  field, index(m ,   s.field)) ; 
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H saved .flag  =» 

BEGIN 

result   —   return, result (result, mval (result)) ; 

free _ last (value _ stack); 

END J; 

result   ENDP; 

(5)    One further set of changes is required.   To determine whether a pro- 

grammer select-fn is to be used (and if so,  what function),  it is necessary 

for ev-selection to evaluate the object,   so as to obtain its mode.   If a 

select-fn is in fact to be used,  we wish to call apply2 which will carry out 

the function-application.   However,  there is one difficulty:   apply2 was 

defined to take the arguments of the function-application as a set of unevalu- 

ated forms and evaluate these during binding (if required).   Normally,  this 

would include the first argument to the function-application:   the object. 

Note that this has already been evaluated.   It is undesirable to evaluate the 

object a second time,   particularly in view of the expected frequency of 

repeated selection (e.g., "b . sei [j] . foo[f(x)]") as well as the possibility of 

side effects. Hence, the evaluated object is passed to apply2 as a third argu- 

ment. This requires the procedure heading of apply2 to be changed to 

PROC (p : procedure .block,  args : f ormp ,  argl : ptr_ any) ptr_ any; 

Corresponding changes must be made in all calls on apply2.   In the binding 

of formal parameters to their arguments,   if argl is present (i.e.,  non-NIL) 

then it is used in place of evaluating arg[l].   This requires changing line 19 

of bind-formals (§5.13.4) to 

arg -   [[(i=l) A (argl * NIL)   -*   argl;  ELSE  eval(args [i]) ]; 
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Continuing with the example of int-lifo,  we next consider the 

programmer-defined assign-fn.   This,   it will be recalled,   is to allow 

forms such as 

x -   5*j 

where x is an int-lifo,  meaning:   push the value of 5j onto x.   A possible 

definition is 

int.lifo . assign_fn   *- 

PROC(x: int.lifo BYREF,  y : INT ) INT ; 

x@ index =  length (x@body)   =»   error ("int.lifo.overflow"); 

x@body [x@ index   *-  x@ index* l]    — y; 

ENDP; 

As with the operation of selection,  it is sometimes necessary to per- 

form assignment using the primitive representation.   To override the 

programmer-defined assign-fn and invoke the assignment function of the 

base mode, the operator ":=" is used.   For example,  if x and y are both 

int-lifos, 

x   :=   y 

is an assignment of int-lifos'  and is equivalent to 

[[x@ index   — y@ index;  x@body   *- y@body] 

In general, the rule for performing assignment is similar to that for 

selection.   The left-hand operand is evaluated. If its mode has a programmer 

assign-fn and if primitive representation is not called for (i.e.,  the assign- 

ment symbol is "—"), then the assign-fn is applied.   Otherwise,  the base 

'When the definition set is complete,  it will be seen that the related form 
"x   — y"   is an assignment of ints. 
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mode assignment function is applied. 

To put this evaluation rule into the language,   only two procedures of 

the evaluator — ev-binary-op and assign — need be changed.   The syntax, 

concrete and abstract,  remains the same. 

ev. binary . op   — 

PROC (b : binary m operation) ptr . any ; 

(b.op = "-") V (b.op - ":-")   ■*   assign(b); 

b.op = ' °"  =>   apply2 (checkproc °eval(b.lhs), (formp : b.rhs) , NIL); 

ELSE apply2 (checkproc °eval_ symbol (b.op), (formp: b.lhs , b.rhs), NIL); 

ENDP; 

assign   — 

PROC (b : binary . operation) ptr . any ; 

DECL   left, right: ptr.any; 

DECL   pv.flag:bool; 

DECL   m:mode; 

left   —   eval(lhs); 

m   •-   mval(left); 

(m. assign.fn * NIL) A (b.op = "—")   ■» 

apply2 (val(m . assign.fn) , ( formp : b.lhs , b.rhs) , left); 

[[pure, value (left)   -»   BEGIN left  —  NIL;   pv.flag —  TRUE  END]; 

right   —   eval(rhs); 

pv.flag  - FALSE   -»   assign2 (left, right) ; 

right   ENDP; 

The third sort of programmer-defined functions used in constructing 

extended mode definitions is the convert-fn.   To continue our example,  we 
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observe that it is often desirable to use an int-lifo x in an argument 

position where an int is required,  e.g., 

x + 3 

meaning that x is to be popped and the popped element is to be added to 3. 

When the evaluator has in hand an int-lifo but a value of different mode is 

required, the convert-fn for int-lifo is called with two arguments: 

(1) the int-lifo,  (2) the mode of the value required.   A possible definition is 

int . lifo . c onvert _ f n   — 

PROC (x: lifo BYREF ,   m : mode) m ; 

DECL   temp: INT; 

m = INT   -> 

[x@index<l   =>   error ("int. lifo .underflow"); 

temp   — x@ body [x@ index] ; 

x@ index   *-   x@ index- 1; 

temp ] ; 

m = bool  =» 

[temp   —   int.lifo . convert.fn(x, INT); 

temp = 0   ■»   FALSE ; 

ELSE  TRUE J; 

ELSE  error ("lifo. convert .error") ; 

ENDP ; 

This allows an int-lifo to be used either as an int or a bool.   In the latter 

case,  we obtain an int and convert this to a bool.   With appropriate 

changes,  we could provide for supplying a complex number,  a string,  a 

quaternion,  or any other sort of object which might be required. 
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In general,  a convert-fn for mode 9H is called with two arguments: 

(1) an object of mode 3H,  (2) the expected mode 9TCf.   The result of the 

convert-fn will either be an 9TC',   in which case the conversion is complete, 

or some 3TC" not equal to 3TC',   in which case the convert-fn for 3TI" will be 

called.   For example, the conversion 

bool   -*   complex 

might be carried out in two stages 

bool —   int int ■*   complex 

using the convert-fn for bool,  followed by the convert-fn for  int. 

In the scheme we propose, automatic conversions via the convert-fns 

are carried out under two circumstances: 

(1) when binding arguments to formal parameters (e.g., to allow Mx+3" 

when x is an int-lifo), in which case the expected mode is the declared 

type of the corresponding formal parameter (cf.   §5. 12. 3), 

(2) when exiting a procedure (e.g., to allow a procedure whose declared 

mode is int to return an int-lifo), in which case the expected mode 

is the declared type of the procedure (cf.   §5. 13. 4). 

Implementing this requires changing bind-formals and proc-exit (cf. §5.13) 

so that they call a new procedure,  convert. 

(1) In bind-formals,   lines 20 and 21 are replaced by 

arg   -*-   convert (m , arg) ; 

(2) In proc-exit,  the first argument is called BYVALUE and lines 3 through 

7 are replaced with 

result   *■   [expected.mode = none   =»   NIL; 

ELSE  convert (expected . mode , result) ]]; 

Convert decides whether a result is compatible with the mode required for 

that result and,  if not,  whether there is a programmer-defined convert-fn 
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which can be applied to perform conversion.   Convert is defined: 

convert   *- 

PROC (expected_ mode : mode BYREF ,  result: ptr _ any) ptr . any ; 

DECL   result. mode : mode ; 

result .mode   *■   mval (result); 

(result „mode = expected „mode) V 

compatible (expected .mode , result .mode)   =*   result; 

(expected, mode . class = "rany") A 

alternative (result, mode ,  expected, mode)   =» 

[ expected, mode   *■   result, mode;  result]; 

result.mode . convert.fn =£ NIL   =» 

convert (expected . mode , 

apply _ convert. fn (val (result. mode . convert.fn), 

result,  expected _ mode )); 

ELSE   error ("convert, error"); 

ENDP; 

This uses two auxiliary routines,  alternative and apply-convert-fn. 

The former is defined: 

alternative   «*- 

PROC (r : mode ,  u : mode) bool; 

NT    This returns TRUE iff r is an alternative of u; 

DECL   found.flag:bool; 

FOR   i - 1 , . . . , length(u.d) TILL found.flag DO 

[u.d[i] =r  =>   found.flag - TRUE J 

found.flag   ENDP; 
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The latter requires a mode definition 

either .formal   «=   RANY (expr_ formal,  code _ formal); 

It is defined: 

apply.convert_fn   *- 

PROC (p : procedure .block, value : ptr. any , expected, mode : mode) ptr. any ; 

NT     This applies  p to the two arguments value and expected.mode ; 

DECL   fm , declared .type : mode ; 

DECL    temp, result: ptr .any ; 

DECL   f: either.formal  SPECIF 

[[type(p) = explicit, procedure   =»   expr. formal;  ELSE code .formal ] ; 

length (p.formals) * 2   =»   error ("convert, error") ; 

NT     Bind first argument; 

f   *-   p . formals [1] ; 

fm   «-   [type(f) = code.formal   =*   f.type ; 

ELSE  eval_ to.type (f.type , mode) ]]; 

not o compatible (fm , mval (value))   =>   error ("convert, error"); 

f. bind .class = "UNEVALED"   +   error ("convert, error"); 

BEGIN 

(f. bind, class ■ "BYREF") A not o pure.value (value)   =* 

install.variable (f.name , NIL, (   ) , value) ; 

temp   *-   install, variable (f.name , f m , dope, vector (value), NIL); 

assign2 (temp , value) ; 

END; 
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NT    Bind second argument ; 

f   *-   p.formals [2] ; 

fm   *-   [type(f) = code.formal  =*   f .type; 

ELSE  eval. to. type (f.type, mode) ]]; 

fm * mode   =*   error("convert.error"); 

temp   +-   install _ variable (f.name , mode , (   }, NIL); 

val(temp)   —   expected_mode ; 

make.current (2); 

NT    Determine the declared type ; 

declared.type   —   eval.to.type (p.result_type , mode) ; 

NT    Evaluate the procedure ; 

[type(f) = code, procedure   =» 

result   +-   xct (p.body , name, pdl, pdl. index); 

ev. declarations (p.declarations) ; 

result   «•-   ev.statementp (p.statements) ]]; 

NT    Clean up and exit; 

result   *-   proc.exit (result, declared.type , pdl.index - 2); 

pdl. index   *-   pdl .index - 2; 

result   ENDP ; 

By defining a single convert-fn,  it is possible to correct a class of 

type mismatches globally.   Instead of writing or changing a set of pro- 

cedures to accept generic arguments,  a single convert-fn can be used. 

This is particularly useful in view of (1) possible changes to the desired 

method of conversion,  and (2) possible additions to the set of affected 

procedures.   For example,   returning to linked lists discussed in section 

8.1,  we can allow forms such as 

cons(x, 3 + 5) 
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or 

rplaca(y, 6) 

by defining the convert-fn for int to deliver a list when required: 

int. convert _ fn   «— 

PROC(i:INT,  m:mode)m; 

NT     This handles conversion of ints to lists,  bools,  or complex numbers; 

DECL   temp : list; 

m = list   => 

[temp   *-   allocate (int, (    ));  val(temp)   —   i; temp] 

m = bool   =*   [i = 0   =*   FALSE;  TRUE ]]; 

m = complex  =*   ( complex: i , 0) ; 

ELSE  error ("int .convert .error"); 

ENDP; 

Hence,  whenever a list is needed and an int is held in hand,  the appropriate 

conversion will take place. 
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Section 9.   CONCLUSION AND WORK REMAINING 

This chapter has presented a design for the base language of an 

extensible language system.   It has also presented a technique for 

semantic specification of programming languages and applied it to the 

formal definition of the base language.   It has demonstrated the utility of 

applying formal semantic specification in the design of programming 

languages,  rather than to their a posteriori description.   Further,   it has 

demonstrated that such a formal semantic specification allows the defi- 

nition of significant extensions easily,  precisely,  and clearly.   Finally, 

this chapter has discussed in informal fashion various aspects of the 

design which were not amenable to formal definition. 

However,  it should be noted that only a base language has been 

designed.   Considerable study remains to be carried out in designing a 

core language and embedding this core in a language system.   While such 

study is beyond the scope of this chapter,  it seems desirable to delineate 

the chief topics requiring further attention and sketch out what appear to 

be the best approaches.   One topic is the mechanism for syntax exten- 

sions.   Another is the system or environment in which the language 

processor exists.   A third is the issue of compilation and its relation to 

the extension mechanism. 

9.1   ADDITIONS TO THE  BASE 

Before taking up the language core,  we wish to point out and deal with 

a number of omissions in the base.   The first of these is the set of primi- 

tive data types.   As noted in section 3.1, the mode real has not been 

included in ELI.   The existence of floating point hardware strongly suggests 
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that it should be.   This involves the following modifications: 

(1) appropriate additions to the concrete syntax so that real constants can 

be expressed, 

(2) addition of a ddb to represent the mode real, 

(3) addition of routines to convert between integers and reals, 

(4) making the four primitive arithmetic procedures generic,   i.e., 

accepting either reals or ints, 

(5) addition of an equality primitive equal-real, 

(6) appropriate additions to the construction functions used in mode defi- 

nition so that new modes can be defined with real components. 

None of these presents any major difficulty. 

A more fundamental omission is the absence of jumps and labels.' 

This was an intentional exclusion.   It is our contention that,  with few 

exceptions,   explicit jumps have a baneful effect on the programs in which 

they are used.   Because they break the relationship between static text 

and dynamic flow,  they make an algorithm more difficult to comprehend 

or modify.   Also,  they tend to serve as a substitute for careful analysis 

in writing the program.   That is,   sloppy analysis of logical relations 

usually manifests itself in tortuously complex programs;  jumps invite 

patching over such a maze instead of re-analyzing it properly.  E. Dijkstra 

[Dijk65] describes some experiments he performed comparing Algol 60 

programs with rewritten versions of the same algorithms in which jumps 

were abolished: 

'It should be pointed out that jumps and labels are logically superfluous. 
Any program using jumps can be translated into one that does not,  using 
instead iterations and conditionals [Böhm66].   Hence,  the issue of 
language power does not enter into this discussion. 
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In all cases tried, however, the program 
without the goto statements turned out to 

be  shorter and more lucid. 

Further,  jumps make analysis of algorithms more difficult.   As noted by 

Dijkstra [Dijk68],  in a language without jumps, the state of a program 

can be always characterized by a sequence of textual and loop indices. 

As these are outside the programmer's control,   such index sequences 

provide independent coordinates in which to describe and analyze the 

progress of the program. 

For our part,  we were most concerned with the discipline imposed by 

the exclusion of jumps and the resulting enhancement in clarity and read- 

ability of ELI programs.   Readability is particularly important for ELI 

since its semantic specification is expressed as code in the language.   In 

constructing the specification,  we found that Dijkstra1 s experiments were 

not atypical.   Initially,  jumps were allowed; their removal consistently 

made the evaluator constructions,  and hence the semantics of the forms 

they define,  more transparent and comprehensible. 

However, the exclusion of jumps and labels creates one difficulty.   It 

was argued in section 7.3 that a formal specification should be pragmati- 

cally as well as semantically valid.   That is, the behavior specified by the 

formal definition should correspond as closely as possible to that intended 

for the actual implementation.   However,  the specification of iteration- 

form given in section 5.8.4 violates this dictum;  it defines iteration by 

means of a recursive evaluator,  whereas it is clear than any reasonable 

implementation will use a code loop.   We could instead give the specifi- 

cation of section 5.8.4 using an iterative evaluator,  but this would consti- 

tute a genuinely objectionable circularity.   It can be well imagined that 
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with two different interpretations of the semantics of the iteration-form, 

one could consult the specification and find each confirmed,   if the point in 

question caused two different interpretations of the specification.   The best 

solution seems to be to introduce jumps and labels as a primitive con- 

struction.   Iteration can then be defined by means of an evaluator which 

uses a jump;  further,  a similar evaluator can be used to define jumps. 

This leaves a circular definition of jumps,  but a jump is indeed a more 

fundamental notion than the admittedly complex iteration-form. 

Hence,   it appears that our design criteria require the addition of 

jumps and labels for use in the semantic specification.   This raises two 

sets of questions: 

(1) What sorts of scope rules do labels obey? How do labels relate 

to other data objects — for example, are label-valued variables 

to be admitted? 

(2) What about the above arguments concerning the harmful effects 

of jumps? 

We believe both sets of questions are satisfactorily answered by the follow- 

ing design. 

(1) Jumps and labels will be allowed only in the simplest possible 

form:   jumps only within a compound-form.   A statement may be labeled 

by prefixing it with an identifier followed by a colon.   Clauses may have 

as their consequent (cf. §5.7.3) the special format 

goto £ 

where  £  is an identifier which labels some statement in the compound- 

form. 

(2) Jumps and labels are provided with the explicit intent that they 

be used only to define higher-level forms of control.   This is not the same 
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as an exhortation to the programmar to minimize use of gotos.   We give a 

positive injunction:   to use jumps in the definition of new forms designed 

to supplant their appearance. 

Another facet of the base which requires addition is input/output.   In 

section 5.15.5,  it was assumed that there exist two files — one for input 

and one for output.   To say the least, this is an oversimplification.   In 

view of current equipment and operating systems,  it is reasonable for the 

language to assume that there exists one or more channels (drums,  disks, 

tapes,  etc.) each containing one or more files.   Channels are identified by 

logical channel number:    1,   2,   3, . . . , max;    files are identified by sym- 

bolic name.   The implementation determines the number of channels,  and 

the correspondence between logical channel numbers and physical channels. 

Input/output can be either legible (i.e.,  character form) or nonlegible 

(e.g.,  binary).   The former is dictated by the representation given for 

values in the concrete syntax; the latter is implementation-dependent. 

A basic set of the file-handling primitives is 

open _ output   ~ 

PROC (channel. number : int, file . name : symbol,  file .type : symbol) bool; 

open, input   ~ 

PROC (channel m number : int, file _ name : symbol) bool; 

close   ~ 

PROC (channel. number : int,  file _ name : symbol) bool; 

Here,  channel-number is an integer between 1 and some implementation- 

defined maximum,  file-name is an arbitrary symbol,  and file-type is 

either "legible" or "nonlegible".   The procedures return TRUE if the com- 

manded action was successfully carried out,  otherwise FALSE.     For 
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example,   if no additional files can be opened on some channel n,  then 

"open.output (n ,  any„name , "legible")"  returns  FALSE. 

The procedures in section 5.15.5 operate on the standard input and 

output files.   These may be established and changed by two primitives 

standard „ input   ~ 

PROC (channel, number : int, file „name : symbol) none ; 

standard „ output   ~ 

PROC (channel, number : int, file „name : symbol) none ; 

The above procedures taken together with those of section 5.15.5 are 

sufficient for performing basic input/output.   However,  it is often desirable 

to format the data being transmitted,  especially on output.   Traditionally, 

programming languages have provided special format constructions which 

can be used to provide the requisite specifications (e.g.,  cf. Fortran IV 

[IBM66c],  Cobol [COBOL61],  PL/I [IBM66a],  and Algol 68 [vanW69]). 

For Algol 60,  where input/output was initially omitted,  there have been a 

number of proposals for adding such format constructions (e.g.,   [Perlis64] 

and [Knu64]). 

Format constructions have not been provided in ELI,  nor is there any 

need for their addition.   One point demonstrated (but not recognized) by the 

proposals for input/output additions to Algol 60 is that format specifi- 

cation can be obtained entirely as a language extension.   It is necessary to 

provide only a few low-level primitives for transacting with the 

input/output devices;  everything else can be readily built up from these. 

Because format specification rules tend to be quite complex and idiosyn- 

cratic,  allowing the programmer control over the format language is 

particularly desirable. 
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The required primitives include the O-ary procedures line and page 

which skip to the next output line and page if these operations are defined 

on the standard output file,  and position which returns the integer index 

of the current character position on the standard output file.   The atomic 

output procedure write-char was defined in section 5.15.5; this must be 

complemented by the symmetric input procedure read-char. 

The formatting technique we propose is to convert all values to 

character string representation and then manipulate the character strings 

as required.   The first step requires a new primitive 

convert_ to _ string   ~ 

PROC (x: int _ or _ bool,  i: int BYREF) string ; 

This converts x to a string £ ,   sets  i to the number of characters in S , 

and returns  S .   The argument x may be either an int or a bool;  when 

reals are added to ELI,  the first formal parameter will be changed to 

admit reals as well.   The representation of x by S is that specified by 

the concrete syntax.   Given the string <S insertion of dollar signs,  check 

protection signs,   special column layout,  or other desired text manipu- 

lation can be performed using general string manipulation techniques. 

When the desired string has been created,  it is output as a sequence of 

characters.   Formatted input is the inverse:   a character string is accepted 

as input,  broken up by string manipulation operations,  and the resulting 

items converted using 

convert _ from_ string   ~ 

PROC (s: string; flag : bool BYREF) int. or. bool; 

This converts  s to an int or a bool and returns the result,   setting flag to 

FALSE if conversion cannot be performed. 
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We anticipate an extension to ELI for carrying out string manipulation 

for input/output as well as more general uses,  say in the spirit and using 

the notation of Ambit/S [Chris64],   [Chris65].   Using this for formatting 

I/O has two advantages over a special builtin format language intended for 

that purpose.   (1) It will surely be more general and hence will allow format- 

ting not provided for in the format language.   (2) Because it can be used for 

purposes other than I/O,   it will pay its way to an extent not possible for a 

dedicated format language. 

9.2   COMPLETING THE  CORE 

Judged as a language core,  ELI is found wanting one important 

characteristic:   a syntax extension facility.   Most of the mechanism 

required for this has already been discussed in sections 4.3.1 and 5.1 and 

will be available in the system.   Hence,  to provide the facility,  we need 

only give the language appropriate handles on this mechanism. 

To allow syntax extension,  we require 

(1) a means of stating new productions of the concrete syntax and repre- 

senting productions as data objects of the language, 

(2) a parser which will accept new productions, 

(3) a means of stating new rules of the abstract syntax, 

(4) a means of specifying the mapping from external program represen- 

tation to internal representation,   i.e.,  from concrete to abstract 

syntax, 

(5) a means of specifying the evaluation rules for a new syntactic construct, 

(6) a means of specifying the scope of syntaxes. 

The language system already provides for (2),   (3) and (5);   it is therefore 

only necessary to address (1),  (4),  and (6). 
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To represent productions of the concrete syntax as data objects in ELI, 

we introduce a new mode,  production: 

element   <=   S(item: symbol, terminal_flag: bool); 

right .part   «=   R (element); 

production  «=   S (lhs : symbol,  rhs : right, part); 

This allows a program to declare variables of type production, to compute 

productions,  and to change the values of productions by assignment.   It will 

be useful to allow constants of mode production.   Hence,  we add to the 

concrete syntax another alternative for constant: 

constant   —   bool.constant | int.constant | char.constant | 

noneref. constant | none.constant | symbol.constant | 

mode.constant | proc.constant | production.constant 

and define a representation for production-constant so that,  for example, 

expression    —    expression   +   term 

becomes an admissible constant in the reference language.   Defining such 

a representation requires (1) expanding the character set and (2) using an 

escape character so that the metalinguistic marks ,!-*l!,  " | ",  "{",  "}", 

"*",  "©",   etc. can be represented.   Otherwise, the definition is straight- 

forward. 

Since the parser delivers a generation tree,   specifying the mapping 

from concrete to abstract syntax requires that one deal explicitly with 

generation trees.   Hence,  we define generation-tree as a new mode.   Using 

this,  each syntactic construct is mapped into abstract representation by a 

procedure supplied as part of the definition of that construct. 

There is only one tricky point here:   syntactic ambiguity.   That is,   it 

may be that a concrete syntax is ambiguous,  or becomes ambiguous when 
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new productions are added to it.    Initial experience with extensible 

languages [lrons70]    indicates that this will not be uncommon.    Further, 

it is,   in general,   recursively undecidable whether a context-free grammar 

is ambiguous [Cant62]    so that we cannot construct an algorithm for de- 

tecting such ambiguities on addition of new productions.    Hence,   it must 

be assumed that we will,   in general,   be dealing with an ambiguous con- 

crete syntax.    This presents no problem to the parse algorithm,   for it 

tries all paths in parallel.    However,   it does imply that some provision 

must be made for handling ambiguity.    A sophisticated system might de- 

fine its generation trees in such fashion that ambiguous generations can 

be represented and require that the procedures which map from concrete 

to abstract form be able to accept ambiguous trees and choose one alter- 

native.    A simpler,   but perhaps more satisfactory,   solution is to accept 

only those programs whose parse is unambiguous.    That is,  we admit 

syntaxes with potential ambiguity but deem it a syntax error if such an 

ambiguity actually occurs in an input string. 

Clearly,   the second solution is a subcase of the first and can be ob- 

tained from it by letting all mappings which are to perform disambiguation 

instead announce an error.    However,   the restriction to unambiguous 

strings is attractive in that it allows each syntax rule to be stated inde- 

pendently of all others.    Consider some non-terminal N having k alter- 

natives in the concrete syntax 

N - ai|a2 |   •••   |ak 

Corresponding to each alternative,   there will in general be a data type 

for the abstract syntax 
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Tr T2 Tk 

If no disambiguation need be carried out then it is necessary only to map 

instances of 0^ onto T.,   for N can be legally construed in only one way. 

Hence,  we can specify a separate mapping from concrete to abstract 

form for each  i,   say 

My   ML,   .. .   ,   M^ 

The point of this is that when adding a new alternative for N,  the new 

alternative can be stated without reference to or concern with the ex- 

isting ones.    A complete specification for a new alternative is then 

given by: 

( 1)    a concrete production,   N -» a,  , -, » 

(2) an abstract data type,   T     . , 

(3) a mapping from instances of a, +1 to instances of T., . , 

(4) an evaluator,  E,    . ,  for the type T, ,. . 

An example may help to make this technique clear.    It will be re- 

called that the iteration-form of ELI (cf.  §5.8) allows the iterated exe- 

cution of a form while an index variable steps through a range of values, 

until some test becomes TRUE.    On occasion,   it may be useful to 

specify repetition of a form until some test becomes TRUE,  with no 

need for an index variable.    For example, 

REPEAT   x  «-f(x)    TILL   p(x) >   q(x) 

specifies that f(x) is to be repeatedly assigned to x,  until p(x) is greater 

than q(x).    To simplify the discussion,  we adopt the convention that a 

repetition is to have no useful value,  i. e. ,   its value is NOTHING. 
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Turning to the definition of such repetition forms, we specify that the 

concrete syntax is 

form  -*  REPEAT  form  TILL form 

while the abstract syntax is 

repetition  t- STRUCT (body: form,   test : form) 

The evaluator for this syntax rule accepts objects of type repetition and 

obtains their value 

ev.repetition  «- 

PROC ( r : repetition) ptr „any ; 

ev_rep2 (r . test,   r . body) ; 

NIL   ENDP ; 

ev_rep2   •- 

PROC (test : form,   body : form) none ; 

eval_to_type(test,   bool)   -   FALSE =£>   NOTHING; 

eval(body) ; 

ev_rep2 (test,   body); 

ENDP 

To formalize this syntax rule, it is necessary to specify the mapping 

from concrete to abstract representation. This in turn requires a repre- 

sentation for generation trees by a data type in the language 

DECL     gen-tree : mode ; 

gen-tree   «- allocate (ddb, (  )) ; 

gen_tree <*=   S {node : symbol,   sons: ROW (PTR(gen_tree))) ; 
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If g is a gen-tree then g . node is the symbol which heads the tree; 

g. sons is the set of immediate descendants; g. sons[i]    is the itn imme- 

diate descendant.    A terminal node g has the property that length 

(g. sons)   ■   0; i.e.,   it has no descendants.    For example,   the generation 

tree 

form 

form2 

constant 

int-constant 

binary-operator 

identifier 

form 

form2 

identifier 

is represented by the gen-tree g having the property that 

g . node =   "form", 

g. sons[l] .node  ■   "form2", 

g. sons [2]  .node =   "binary.operator", 

g. sons [2] .sons[l] . sons [l] .node =   "*". 

The mapping,   i. e. ,   translation, for objects of syntactic type repetition 

is specified by the following procedure 

trans« repetition   «- 

PROC (g : gen.tree) repetition; 

( repetition : trans_form(g . sons [2] ),   trans_form(g . sons [4] )) 

ENDP; 

403 



This constructs an aggregate of mode repetition consisting of two com- 

ponents.     The first component is obtained by performing the concrete - 

to-abstract mapping on the second component of the sub-tree (the first 

"form" in the concrete syntax rule); the second abstract component is 

obtained by mapping the fourth concrete component.     The mapping of 

the components is carried out by the procedure trans -form which handles 

conversion for objects of syntactic type form.     Trans-form is defined 

in an analogous fashion; it returns a form,   as required by the definition 

of aggregate. 

To complete the example,   it is necessary only to choose some 

specific notation for syntax rules in the reference language.    The fol- 

lowing illustrates a plausible choice. 

SYNTAX.RULE 

form : : -   REPEAT form TILL form   & 

repetition  <-  S(body:form,   test: form)    & 

trans.repetition  #- 

PROC (g : gen.tree) repetition; 

( repetition : trans _form(g . sons [2] ),   trans _form( g . sons [4])) 

ENDP   & 

ev.repetition  «- 

PROC ( r : repetition) ptr .any; 

ev_rep2(r . test,   r . body) ; NIL   ENDP, 
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ev.repZ  «- 

PROC (test: form,   body : form) none; 

eval.to„type (test,   bool)   =   FALSE    =>   NOTHING; 

eval(body) ; 

ev_rep2(test,   body);   ENDP 

END_RULE 

This uses the symbols "SYNTAX-RULE" and "END-RULE" as opening 

and closing brackets,  the symbol "&" as a delimiter to separate the 

four components,   and the symbol ": : = " to separate the left and right 

hand sides of the concrete production. 

To summarize,  a new syntax rule is a 4-tuple: 

(concrete production , abstract type , 

a mapping from concrete to abstract representation, evaluator) 

A syntax is a set of syntax rules. 

Given a syntax S,  a new syntax S' can be defined by adding to it one 

set of rules S   and deleting from it another set S,; that is, 

S'    -   SUS    - S, a       a 

By defining the operators "U",  "-",  and M*-" to act on syntaxes,  the 

creation,  modification,  and extension of syntax sets can be readily 

carried out. 

There is,  however,  a problem in establishing the syntax scope;  i.e., 

how one specifies what the "current" syntax shall be.   In a block-structured 

language such as Algol 60,   it would be convenient to link syntax scope to 

block scope so that the syntax for each block B. is 

Si  S   Sio U   Sia " Sid 
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where S.     is the syntax of the immediately surrounding block and S.     and 

S. , are declared by declarations in the (blockhead) of B. as syntax sets 

being added and deleted,   respectively.    In ELI,   however,   static block 

structure does not have the importance   it has in Algol 60 so that this 

scope convention is not really justified for ELI (cf. §7.2.2).    Further, 

it would be useful to treat syntax sets as manipulatable objects,   if only 

to allow the creation of and subsequent drawing upon a syntax library. 

It would therefore seem reasonable to make the establishment of a syntax 

S as the "current" language syntax an executable form. 

How this is carried out depends on the environment in which the 

language exists —specifically the relation between parse-time and run- 

time.    That is,   establishing and changing a syntax by executable commands 

brings up issues in job control and its interaction with program execution. 

Specifically,   one would want different conventions in a batch environment 

than in an on-line,   interactive one.     We intend that ELI operate in an 

interactive environment; after discussing this environment in the next 

sub-section,   we will discuss how syntax change will be handled. 
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9.3   INTERACTIVE  ENVIRONMENT 

ELI is currently specified as if it were to operate in a batch environ- 

ment.   A program (i.e.,  form) is read in,  it is evaluated,   possibly some 

output is produced,  and action halts.   While this was a realistic scenario 

ten years ago and is still the mainstay of computing today,  it is hardly 

appropriate for attacking the interesting problems for which the language 

can be used.   Clearly,  ELI should be augmented to operate in an on-line, 

interactive environment.   We chose the batch processing model only for 

initial simplicity;  here,  we discuss the necessary augments. 

The construction of an interactive environment is to some degree inde- 

pendent of the language itself.   Hence,  the environments designed for other 

on-line languages such as Joss,  APL, Lisp and Basic can,  in large 

measure, be taken over for ELI.   We contend that the best of these is that 

used for the BBN Lisp System [Bobr68]  and intend to adopt as much of this 

as possible.   We refer the reader to the cited reference for a general dis- 

cussion of the BBN Lisp System and to [Bobr67b]  and  [Teit69]  for detailed 

discussion of the particularly important issues:   error-handling,  editing, 

and debugging. 

The basic change to the ELI specification is to replace the read- 

evaluate-halt sequence with a loop^ 

(1) read in a form, 

(2) evaluate it, 

(3) print its value, 

(4) goto(l). 

'The loop is broken by evaluation of a special procedure,   say logout, 
which returns control to a higher-level supervisor,  e.g., the operating 
system. 
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The program described by this loop is called the ELI supervisor. 

This cycle would be of little use if each form was evaluated independ- 

ently of all others,   i.e.,   in a virgin environment.   To make it useful,  we 

add the notion of top-level environment:   a set of bindings to global vari- 

ables whose scope is the entire session,  rather than a specific pro- 

cedure.   To create such variables,  we allow declarations to be executable 

forms when submitted as programs to the supervisor,   so that 

DECL   x:INT 

is legal at the top-level.   Evaluation of this form creates a variable  x of 

mode INT and initializes it to zero.   Subsequently,  the command' 

x   -   3 

sets the value of x to be 3.   Unlike variables local to a procedure,  x may 

later be redeclared by the command 

DECL   x: complex 

so that the command 

x   —   ( complex: 2 , 10) 

is legal.   The scope of global variables such as  x is treated as if each 

command was evaluated within the dynamic scope of a procedure to which 

all globals are local.   That is,  any global can be used free in any command. 

Continuing with the above example,  the command 

PROC (z : complex) none ;  x.re   •—   z.im   ENDP ((complex: 5 , 7) ) 

changes the value of x to (complex: 7, 10). 

^For emphasis,  we will use the term "command" to refer to forms input 
to the supervisor. 
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Going one step farther,  it will prove convenient to allow use of vari- 

ables without declaring or redeclaring their mode.   For example, 

x   -   3 

by itself provides quite enough information to both establish a variable 

named "x" of correct mode and assign the desired value to it.   This sort 

of implied declaration,  while hardly profound,  is almost a necessity if the 

system is to provide a comfortable top-level environment. 

Implementation of global variables is relatively straightforward.   The 

mode symbol-table-element is redefined to have an additional component 

global-value of type ptr-any.   The routine ev-symbol (cf. §5.5.4) which 

evaluates symbols is redefined such that if it finds a NIL datum component, 

it tries the global-value cell.   Hence, the global value will have outermost 

scope and will be used whenever no value of smaller scope supercedes this. 

The top-level evaluator must be somewhat different from the normal eval 

(cf. §5.3.5) in that it accepts declarations as legal forms and treats them 

specially.   Specifically, the storage for a global variable is obtained from 

the heap.   Also,  to provide for automatic declaration of global variables 

in situations such as 

x   -   3 

the top-level evaluator treats assignments having the format 

identifier   *-   form 

as a special case.   The form is evaluated,   producing a value @.   If the 

identifier has no global value or this value is incompatible with the mode 

of O, then an automatic (re)declaration is performed. 

The ability to transact with global values allows the programmer to 

define procedures by executing a top-level assignment to a proc-var,  e.g., 
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factorial  *-  PROC(n:INT) INT; n  =   0 => 1; factorial (n+1) ENDP ; 

Editing can be carried out by executing a call on an editing program 

(which can be written in ELI) 

edit(factorial) 

The procedure edit is to act as a lower-level supervisor accepting edit- 

ing commands and acting upon them,   e.g., 

replace  " + "   by   "-" 

This bring up another issue: how editing is to be carried out. 

Specifically,   the question is what structure is to be ascribed to a form 

in specifying its parts for the purpose of editing them.    Taking the form 

as a single undifferentiated string of characters is the simplest approach 

but has little else to recommend it.    It becomes hopelessly clumsy when 

dealing with a form of any size.    It is far more useful to treat the form 

as a structured object and specify editing commands using this structure. 

The natural structure is that assigned by the concrete syntax.    Hence,   it 

should be possible to speak of the itn statement of a procedure or the 

test part of a conditional clause.   In short,   what we require is syntax- 

directed editing; i.e.,   the editor interprets the editing commands in ac- 

cordance with the syntax for the form under consideration. 

Establishing the syntax for a form can be carried out as follows.    We 

introduce a primitive procedure set-cur rent-syntax which when called 

sets the "current" syntax.    Hence,   after 

s et „current, syntax ( s) 
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the current syntax is s.    Whenever a command is input to the supervisor, 

the parser is called as part of the process of translating the string of 

input characters to the internal representation of the command.    When 

the parser is called,   it uses the current syntax. 

Hence,   the relation between source text and abstract program is 

specified by the syntax current at the time the form was parsed.    In 

general,   a form is determined by a source text and a syntax.    Since the 

syntax cannot be changed during the reading of a form,   the syntax through- 

out a form is constant.    When a command contains many constituent forms, 

the syntax associated with the outermost form applies throughout.    Hence, 

it might be useful to establish a distinction between a form and a command 

as follows: 

command <£=     S (object: form,   interpretation : syntax) 

Given a command,   its interpretation component allows one to obtain the 

concrete syntax used in parsing it and,   more important,   the evaluation 

rules which specify its meaning. 
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9.4   COMPILATION 

It was argued in section 2.1 that for the purpose of semantic specifi- 

cation,  a model based on interpretation was distinctly preferable to one 

based on compilation.   Section 5 presented such a model.   Section 6 dis- 

cussed how the model could be converted to an interpreter to run on a 

computing machine.   Quite aside from issues in formal semantics,  this is a 

reasonable approach to take in obtaining a first implementation.    Among 

other things,  an interpreter-based system is generally more suitable for 

an interactive environment of the sort described in section 9.3.   It simpli- 

fies program editing and makes practical the construction of programs by 

programs for immediate execution.'    This is particularly useful in 

debugging: sophisticated tracing and monitoring can be performed at little 

expense by using the editor to insert conditional breakpoints into pro- 

cedures. 

However, the loose bindings which make possible this flexibility have 

their price:   slow execution.   Experience with various Lisp systems 

[McCar62],   [Bobr69] indicates that interpreted code,  at least in Lisp,  runs 

one to two orders of magnitude slower than compiled code.   Hence,  at 

some point it will be necessary to sacrifice loose bindings and perform 

compilation.   It will prove useful to use the term "compilation" in a some- 

what idiosyncratic fashion,  to mean the progressive replacement of the 

variable by the constant.   Translation from abstract representation to 

machine code is only one aspect of this.   For obvious reasons,   it is useful 

'While this can surely be done in a compiler-based language by calling on 
the compiler at run-time,  as in Fortran or MAD on the University of 
Michigan Executive System for the 7090 [Mich64],   it is less efficient and 
convenient and hence not usually done. 
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to allow various levels of compilation.   We distinguish four,  of which the 

first two have already been discussed: 

(1) string text (on which character string editing is appropriate), 

(2) abstract program representation (edited in syntactic units and evalu- 

ated by an interpreter), 

(3) function compilation in which a single procedure is translated to 

machine language (editing within a compiled procedure is forbidden, 

but individual procedures can be changed in abstract form and 

recompiled without affecting others), 

(4) group compilation in which a group of procedures is compiled as a 

unit;  since the values of all proc-vars in the group are frozen,  it is 

possible to carry out incremental compilation in selecting the appropri- 

ate cases from generic procedures in the group (procedures in the 

group can only be changed by recompiling the entire group). 

Integrating a compiler with the existing language requires some changes. 

Procedures compiled at the function level are already provided for 

(cf. §5.12.4),  since it is assumed that all the primitive procedures are 

represented in machine-code form.   Evaluating arguments and binding 

these to the formal parameters of code-procedures is roughly the same as 

for explicit-procedures; the major difference between the two is that the for- 

mer are executed (cf. §5.13.4).   On the other hand,  code compiled at the 

group level is not treated in the current model and extensions must be 

made to provide for this.   The problem is not the abstract syntax definition 

which is straightforward, but rather that of introducing into the language 

the notion of "freezing" the values of certain variables — here, the proc- 

vars of the procedures in the group.   There has been some work on this 

sort of freezing (e.g.,  cf. [CPL66] and [Pop68]);    however,   some further 
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research is needed,  particularly with regard to the unification of frozen 

variables with own variables in the Algol 60 sense. 

To allow efficient compilation,   it will be necessary to make a few 

other changes to the language.   One such change has been discussed in 

section 7.1.3:   proc-vars should be strongly rather than weakly typed. 

For example,   instead of 

DECL   p:proc„var; 

it would be useful to provide additional information in the declaration.   It 

would,  for example,  be nice to know at compile-time the number of argu- 

ments to p, their modes,  and the result delivered by p independent of any 

particular procedure which might be assigned to p.   For example, 

DECL   p : proc.var (INT , complex, intp) char; 

Another piece of information which would be useful to the compiler is the 

modes of all free variables.   A means of providing this information can 

be integrated nicely into the language if we carry out the extension dis- 

cussed in section 7.2.1 and allow declared variables to be bound by refer- 

ence to objects having scope outside the procedure.   For example, 

DECL   x:intp  EQU a [i] ; 

establishes that within the procedure nxM names the same object as "a[i]n 

names outside the procedure, where the value of i is fixed at the time of 

binding. We can then require that all variables used inside the procedure 

proper be bound; the effect of a free variable  x of mode 3H is obtained by 

DECL   xiM EQU x; 

Here,  the first "x" is a formal name whose scope is this procedure,  and 

the second Mx" refers to the variable which exists outside the procedure. 
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A paraphrase extension would allow one to write the declaration 

FREE   x: 9TC; 

by defining this to have the same meaning. 

One other aspect of compilation requires considerable study and will 

likely prove to be an important area for future research:   implementation 

of metaphrase extensions.   We introduced the notion of metaphrase 

extension with the observation that a good semantic formalism describes 

a space far larger than the particular language it is used to model.   Many 

facilities which are difficult to state as paraphrases on the core language 

can be easily and efficiently specified by using the formalism to define a 

metaphrase extension.   Section 8,   specifically sections 8.3 and 8.4,  illus- 

trated how such extensions may be used to define powerful language 

facilities.   This gives a rigorous specification of the extensions;  it should 

be noted,  however, that there remains the issue of implementation. 

There is,  of course,  one immediate solution.   Let 5" be some new 

syntactic form with evaluator £ specified by an ELI procedure &.   We can 

simply use & to evaluate instances & of P.    However,   since 0* is interpre- 

ted and it in turn interprets ^,  we pay a double overhead; this may be 

unacceptable.   The solution is to take 0 as formal specification of £   but 

transform it into some more efficient means for carrying out the required 

evaluation.   The issue is how to carry this out.   Hand translation,  either 

by writing assembly code or by using a translator writing system,  is 

acceptable only as a last resort.   It is inelegant and overly demanding on 

the programmer.   Further,  it may well introduce errors:   if we specify 

an evaluation process in two different ways,   it is unlikely that we have said 

the same thing twice; very likely we have said two different and contra- 

dicting things. 

415 



If a compiler is available,  it can be used to perform the translation. 

However,  this is subject to two limitations.   (1) Let if be the result of 

compiling^,    if acts exactly as did & only faster;  i.e., if still interprets 

instances of the type #" because & was written as an interpreter.   Hence, 

although new syntactic types such as ST may be added,  instances of these 

types can be only evaluated by interpretation; there is no compiler for 

them.   The language then has two levels:   the original language £    and 
° 

some extension set £..   Since only programs written in strict £    can be 

compiled,  there will be justifiable temptation to stay within its confines, 

on the ground of efficiency.     (2) In particular, & must be written in £  ; 

otherwise,  the compiler will reject it.   This explicitly rules out the power- 

ful technique of building definition sets one upon another.   In short,  this 

sort of approach would significantly weaken the extension facility and its 

usefulness. 

The most promising approach would seem to be the creation of a 

"smart" compiler for evaluators.   That is,  given a procedure & which 

evaluates by interpretation instances of a syntactic type *Tt  the evaluator- 

p.nmpiler turns out a procedure which can compile instances of 5".   The 

evaluator-compiler differs from a related notion,  the compiler-compiler, 

as follows.   The source program fed to the latter specifies a compiler in 

a high-level language; this needs only to be translated into machine code 

by the compiler-compiler.   On the other hand,  the source program & fed 

to the evaluator-compiler specifies an interpreter;  the evaluator- 

compiler deduces from this an equivalent compiler^'  and then translates 

this.   The difficult point is,  of course,   performing the deduction.   Real- 

izing this proposal will require techniques from compiler construction, 

artificial intelligence,  and the theory of programming languages.   We 

anticipate that this will be a fruitful and instructive area for future research. 
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9.5   OTHER OPEN ISSUES 

In addition to the above issues,  there are a number of others which 

have been neglected in this study.   We point these out to make clear their 

omission and,  hopefully,  invite research into these areas. 

The first is the issue of control.   In ELI,  control is strictly hier- 

archal;  control can only be relinquished by procedure call and returned by 

procedure exit.   (We informally extended this to provide for interrupts but 

did not supply details.)   However, this is only one of many possibilities; 

others include:   co-routine calls,  returns and jumps which skip through 

one or more levels of intervening procedures,   parallel control,  and back- 

tracking searches among alternative paths.   Some of these could be added 

to the language by metaphrase extension, for some of the handles on control 

(e.g., the stack) are available as manipulatable objects in the semantic 

model.   However,   such additions would likely be ad hoc mimicking of 

various control features found in other languages.   What is needed is a 

study into regimes of control,  how they relate to one another,   possible 

sets of primitives'  which form bases for control structures,  and similar 

issues.   Once these issues are understood,  incorporation of control 

structures into an extensible language can be carried out in a systematic, 

rational fashion. 

A second issue is related to control:   the sharing of resources among 

various processes.   Here,  resources include common files on output 

'It should be clear that there is no one unique set of control primitives 
from which all the others can be obtained.   There are several such sets. 
The real issue is working out which primitives are independent of which 
others.   From this, various sets can be tabulated.   Selection of a set 
from such a listing then depends on personal taste,  available hardware, 
and other factors not connected with the formal theory of control. 
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devices,   common portions of address space,  and common code segments; 

processes include both separate tasks initiated by different programs and 

streams of a given task established by a parallel control facility.   We 

should like such sharing to take place subject to restrictions which provide 

required protection in various levels.   This brings up issues such as owner- 

ship of resources,  transfer of ownership,  and various types of sharing 

permission.   We should like a language cognizant of these facilities and 

our semantic model expanded to explicate and systematize their behavior. 

Again,  this is an area in need of study — study in which formal semantic 

models will play a significant role. 
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